Skip to main content

Advertisement

Log in

Modelling carbon nanocones for selective filter

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper investigates the potential use of carbon nanocones as selective filtration devices. Using a continuum approach and the Lennard-Jones potential, we determine the energy of truncated carbon nanocones interacting with ions (Na\(^{+}\) and Cl\(^{-}\)) and water molecules. The Verlet algorithm is adopted to determine the dynamics of the ions and the water molecules as a result of the interaction with the nanocones. The acceptance energy is derived to determine the minimum and critical radii of the truncated nanocones that block the ions and allow only water molecules to pass through. Our results show that the channel with apex angle of \(19.2^{\circ}\) and opening radius in the range 3.368–3.528 Å gives highest suction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Ge, K. Sattler, Observation of fullerene cones. Chem. Phys. Lett. 220, 192–196 (1994)

    Article  CAS  Google Scholar 

  2. A. Krishnan, E. Dujardin, N.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997)

    Article  CAS  Google Scholar 

  3. H. Heiberg-Andersen, A.T. Skjeltorp, K. Sattler, Carbon nanocones: a variety of non-crystalline graphite. J. Non-Cryst. Solids. 354, 5247–5249 (2008)

    Article  CAS  Google Scholar 

  4. S.N. Naess, A. Elgsaeter, G. Helgessen, K.D. Knudsen, Carbon nanocones: wall structure and morphology. Sci. Technol. Adv. Mater. 10, 065002 (2009)

    Article  Google Scholar 

  5. D. Ma, H. Ding, X. Wang, N. Yang, X. Zhang, The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. Int. J. Heat Mass Transf. 108, 940–944 (2017)

    Article  CAS  Google Scholar 

  6. P.-C. Tsai, T.-H. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18, 105702 (2007)

    Article  Google Scholar 

  7. J.X. Wei, K.M. Liew, X.Q. He, Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 261906 (2007)

    Article  Google Scholar 

  8. K.M. Liew, J.X. Wei, X.Q. He, Carbon nanocones under compression: buckling and post-buckling behaviors. Phys. Rev. B 75, 195435 (2007)

    Article  Google Scholar 

  9. J.C. Charlier, G.M. Rignanese, Electronic structure of carbon nanocones. Phys. Rev. Lett. 86, 5970–5973 (2001)

    Article  CAS  Google Scholar 

  10. R. Pincak, V.A. Osipov, Localized electron states near pentagons in variously shaped carbon nanoparticles. Phys. Lett. A 314, 315–321 (2003)

    Article  CAS  Google Scholar 

  11. N. Karousis, I.S. Martinez, C.P. Ewels, N. Tagmatarchis, Structure, properties, functionalization, and applications of carbon nanohorns. Chem. Rev. 116, 4850–4883 (2016)

    Article  CAS  Google Scholar 

  12. C. Mannaris, B.M. Teo, A. Seth, L. Bau, C. Coussios, E. Stride, Gas-stabilizind gold nanocones for acoustically mediated drug delivery. Adv. Healthc. Mater. 7, 1800184 (2018)

    Article  Google Scholar 

  13. I.C. Chen, L.H. Chen, A. Gapin, S. Jin, L. Yuan, S.H. Liou, Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501 (2008)

    Article  Google Scholar 

  14. O.O. Adisa, B.J. Cox, J.M. Hill, Open carbon nanocones as candidates for gas storage. J. Phys. Chem. C 115, 24525–24533 (2011)

    Article  Google Scholar 

  15. Y. Zhang, G.C. Schatz, Conical nanopores for efficient ion pumping and desalination. J. Phys. Chem. Lett. 8, 2842–2848 (2017)

    Article  CAS  Google Scholar 

  16. W. Li, W. Wang, Y. Zhang, Y. Yan, P. Král, J. Zhang, Highly efficient water desalination in carbon nanocones. Carbon 129, 374–379 (2018)

    Article  CAS  Google Scholar 

  17. T. Humplik, J. Lee, S.C. O’Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanostructured materials for water desalination. Nanotechnology 22, 292001 (2011)

    Article  CAS  Google Scholar 

  18. Q. Shi, H. Gao, Y. Zhang, Z. Meng, D. Rao, J. Su, Y. Liu, Y. Wang, R. Lu, Bilayer graphene with ripples for reverse osmosis desalination. Carbon 136, 21–27 (2018)

    Article  CAS  Google Scholar 

  19. X.W. Meng, J.P. Huang, Enhanced permeation of single-file water molecules across a noncylindrical nanochannel. Phys. Rev. E 88, 014104 (2013)

    Article  CAS  Google Scholar 

  20. M. Wang, X. Xu, Y. Li, T. Lu, L. Pan, Enhanced desalination performance of anion-exchange membrane capacitive deionization via effectively utilizing cathode oxidation. Desalination 443, 221–227 (2018)

    Article  CAS  Google Scholar 

  21. L.A. Girifalco, M. Hodak, R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62(19), 13104–13110 (2000)

    Article  CAS  Google Scholar 

  22. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98 (1967)

    Article  CAS  Google Scholar 

  23. Y. Chan, Y. Ren, Mathematical modeling and simulations on massive hydrogen yield using functionalized nanomaterials. J. Math. Chem. 53, 1280–1293 (2015)

    Article  CAS  Google Scholar 

  24. F. Rahmat, N. Thamwattana, B.J. Cox, Modelling peptide nanotubes for artificial ion channels. Nanotechnology 22, 445707 (2011)

    Article  Google Scholar 

  25. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964)

    Google Scholar 

  26. A .K. Rappé, C .J. Casewit, K .S. Colwell, W .A. Goddard III, W .M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  27. I .S. Gradshteyn, I .M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Academic Press, Cambridge, 2007)

    Google Scholar 

  28. B .J. Cox, N. Thamwattana, J .M. Hill, Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proc. R. Soc. A 463, 461–477 (2007)

    Article  CAS  Google Scholar 

  29. R. Chang, J. Overby, Chemistry, 11th edn. (McGraw-Hill Education, New York, 2014)

    Google Scholar 

Download references

Acknowledgements

NT is grateful to the Faculty of Science at the University of Newcastle for her startup fund and to the Australian Research Council for the funding of Discovery Project DP170102705. DB acknowledges the Thailand Research Fund RSA6180076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangkamon Baowan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarapat, P., Thamwattana, N., Cox, B.J. et al. Modelling carbon nanocones for selective filter. J Math Chem 58, 1650–1662 (2020). https://doi.org/10.1007/s10910-020-01153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01153-y

Keywords

Navigation