当前位置: X-MOL 学术J. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering lithium-ion battery cathodes for high-voltage applications using electromagnetic excitation
Journal of Materials Science ( IF 4.5 ) Pub Date : 2020-05-28 , DOI: 10.1007/s10853-020-04871-5
Laisuo Su , Shikhar Krishn Jha , Xin Li Phuah , Jiang Xu , Nathan Nakamura , Haiyan Wang , John S. Okasinski , B. Reeja-Jayan

Microwave radiation (MWR), a type of electromagnetic excitation source, reduces the synthesis temperature and processing time for chemical reactions compared to traditional synthesis methods. Recently, we demonstrated that MWR can engineer ceramics with different crystal phases compared to traditional methods [ Journal of Materials Chemistry A 5 , 35 (2017)]. In this study, we further apply the MWR-assisted technique to improve the electrochemical performance of LiCoO 2 cathodes by engineering TiO 2 and ZrO 2 ceramic coatings. Electrochemical tests suggest that the TiO 2 coating improves the rate capability of the LiCoO 2 electrode. Both TiO 2 and ZrO 2 coatings improve the high-voltage (4.5 V) cycling stability of LiCoO 2 . The capacity remaining is improved from 52.8 to 84.4% and 81.9% by the TiO 2 coating and the ZrO 2 coating, respectively, after 40 cycles. We compare these results with existing studies that apply traditional methods to engineer TiO 2 /ZrO 2 on LiCoO 2 , and find that the MWR-assisted method shows better performance improvement. X-ray photoelectron spectroscopy measurements suggest that the improved cycling stability arises from the formation of metal fluorides that protect the electrode from side reactions with electrolytes. This mechanism is further supported by the reduced Co dissolution from TiO 2 /ZrO 2 -coated LiCoO 2 electrode after cycling. This study provides a new toolbox facilitating the integration of many delicate, low melting point materials like polymers into battery electrodes.

中文翻译:

使用电磁激励为高压应用设计锂离子电池阴极

微波辐射 (MWR) 是一种电磁激发源,与传统合成方法相比,可降低化学反应的合成温度和处理时间。最近,我们证明了与传统方法相比,MWR 可以设计具有不同晶相的陶瓷 [Journal of Materials Chemistry A 5, 35 (2017)]。在本研究中,我们进一步应用 MWR 辅助技术通过设计 TiO 2 和 ZrO 2 陶瓷涂层来改善 LiCoO 2 正极的电化学性能。电化学测试表明TiO 2 涂层提高了LiCoO 2 电极的倍率性能。TiO 2 和ZrO 2 涂层均提高了LiCoO 2 的高压(4.5 V)循环稳定性。通过TiO 2 涂层和ZrO 2 涂层,剩余容量分别从52.8%提高到84.4%和81.9%,40 个循环后。我们将这些结果与应用传统方法在 LiCoO 2 上设计 TiO 2 /ZrO 2 的现有研究进行比较,发现 MWR 辅助方法显示出更好的性能改进。X 射线光电子能谱测量表明循环稳定性的提高源于金属氟化物的形成,金属氟化物保护电极免受与电解质的副反应。循环后从TiO 2 /ZrO 2 涂覆的LiCoO 2 电极中减少的Co溶解进一步支持该机制。这项研究提供了一个新的工具箱,有助于将许多精细的低熔点材料(如聚合物)集成到电池电极中。并发现 MWR 辅助方法显示出更好的性能改进。X 射线光电子能谱测量表明循环稳定性的提高源于金属氟化物的形成,金属氟化物保护电极免受与电解质的副反应。循环后从TiO 2 /ZrO 2 涂覆的LiCoO 2 电极中减少的Co溶解进一步支持该机制。这项研究提供了一个新的工具箱,有助于将许多精细的低熔点材料(如聚合物)集成到电池电极中。并发现 MWR 辅助方法显示出更好的性能改进。X 射线光电子能谱测量表明循环稳定性的提高源于金属氟化物的形成,金属氟化物保护电极免受与电解质的副反应。循环后从TiO 2 /ZrO 2 涂覆的LiCoO 2 电极中减少的Co溶解进一步支持该机制。这项研究提供了一个新的工具箱,有助于将许多精细的低熔点材料(如聚合物)集成到电池电极中。循环后从TiO 2 /ZrO 2 涂覆的LiCoO 2 电极中减少的Co溶解进一步支持该机制。这项研究提供了一个新的工具箱,有助于将许多精细的低熔点材料(如聚合物)集成到电池电极中。循环后从TiO 2 /ZrO 2 涂覆的LiCoO 2 电极中减少的Co溶解进一步支持该机制。这项研究提供了一个新的工具箱,有助于将许多精细的低熔点材料(如聚合物)集成到电池电极中。
更新日期:2020-05-28
down
wechat
bug