当前位置: X-MOL 学术Bull. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure and wear behaviour of graphene–$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$ binary particle-reinforced aluminium hybrid composites
Bulletin of Materials Science ( IF 1.9 ) Pub Date : 2020-06-17 , DOI: 10.1007/s12034-020-02124-4
Mahmut Can Şenel , Mevlüt Gürbüz

In this study, Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document} and graphene-reinforced aluminium matrix composites (AMCs) with various contents (Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document}: 1, 3, 6, 9 wt%; graphene: 0.1, 0.3, 0.5 wt%) were produced by the powder metallurgy method. The phase and microstructure analyses of the composites were performed by X-ray diffractometry and scanning electron microscopy, respectively. To investigate the tribological behaviour of Al–Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document} and Al–Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document}–graphene composites, pin-on-disc experiments were conducted with different loads (F=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = 10$$\end{document}, 20 and 30 N) at a constant sliding speed (200 rpm). Thus, the effects of Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document} and graphene contents on microstructure, Vickers hardness, apparent density, porosity, wear rate and friction coefficient of AMCs were investigated. Test results reveal that the highest Vickers hardness (66±1HV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$66 \pm 1\hbox { HV}$$\end{document}), the lowest porosity (5.6%), wear rate (3.1×10-5mm3N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.1 \times 10^{\mathrm {-5}}\hbox { mm}^{\mathrm {3}}\hbox { N}^{\mathrm {-1}}$$\end{document}m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {m}^{\mathrm {-1}})$$\end{document} and friction coefficient (0.13) were obtained for Al–9Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document}–0.1 graphene. After attaining 0.1% graphene content, agglomeration was detected from the microstructure images of Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document}–graphene-reinforced AMCs. It was concluded that Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document} had an outstanding wear resistance and graphene was a good solid lubricant for AMCs.

中文翻译:

石墨烯的微观结构和磨损行为–$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$ 二元颗粒增强铝混合复合材料

复合材料的物相和微观结构分析分别通过 X 射线衍射和扫描电子显微镜进行。研究 Al–Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{ 的摩擦学行为upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{ document} 和 Al–Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \ setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document}–石墨烯复合材料,使用不同的负载(F=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage {mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = 10$$\end{document}, 20 和 30 N) 以恒定的滑动速度 (200 rpm) . 因此,Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \ setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document} 和研究了石墨烯含量对AMCs微观结构、维氏硬度、表观密度、孔隙率、磨损率和摩擦系数的影响。1 \times 10^{\mathrm {-5}}\hbox { mm}^{\mathrm {3}}\hbox { N}^{\mathrm {-1}}$$\end{document}m-1 )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin} {-69pt} \begin{document}$$\hbox {m}^{\mathrm {-1}})$$\end{document} 和摩擦系数 (0.13) 获得了 Al–9Si3N4\documentclass[12pt] {minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin {document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document}–0.1 石墨烯。在达到 0.1% 石墨烯含量后,从 Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{ 的微观结构图像中检测到团聚upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{文档}-石墨烯增强型 AMC。得出的结论是 Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength {\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}$$\end{document} 有一个出色的耐磨性,石墨烯是 AMC 的良好固体润滑剂。
更新日期:2020-06-17
down
wechat
bug