Skip to main content
Log in

Microstructure and wear behaviour of graphene–\(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\) binary particle-reinforced aluminium hybrid composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, \(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\) and graphene-reinforced aluminium matrix composites (AMCs) with various contents (\(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\): 1, 3, 6, 9 wt%; graphene: 0.1, 0.3, 0.5 wt%) were produced by the powder metallurgy method. The phase and microstructure analyses of the composites were performed by X-ray diffractometry and scanning electron microscopy, respectively. To investigate the tribological behaviour of Al–\(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\) and Al–\(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\)–graphene composites, pin-on-disc experiments were conducted with different loads (\(F = 10\), 20 and 30 N) at a constant sliding speed (200 rpm). Thus, the effects of \(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\) and graphene contents on microstructure, Vickers hardness, apparent density, porosity, wear rate and friction coefficient of AMCs were investigated. Test results reveal that the highest Vickers hardness (\(66 \pm 1\hbox { HV}\)), the lowest porosity (5.6%), wear rate (\(3.1 \times 10^{\mathrm {-5}}\hbox { mm}^{\mathrm {3}}\hbox { N}^{\mathrm {-1}}\) \(\hbox {m}^{\mathrm {-1}})\) and friction coefficient (0.13) were obtained for Al–9\(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\)–0.1 graphene. After attaining 0.1% graphene content, agglomeration was detected from the microstructure images of \(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\)–graphene-reinforced AMCs. It was concluded that \(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\) had an outstanding wear resistance and graphene was a good solid lubricant for AMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rajmohan T and Palanikumar K 2012 J. Compos. Mater. 46 869

    Article  CAS  Google Scholar 

  2. Saboori A, Novara C, Pavese M, Badini C, Giorgis F and Fino P 2017 J. Mater. Eng. Perform. 26 993

    Article  CAS  Google Scholar 

  3. Alizadeh A, Taheri-Nassaj E and Baharvandi H R 2011 Bull. Mater. Sci. 34 1039

    Article  CAS  Google Scholar 

  4. Neikow O G, Naboychenko S S and Dawson G 2009 Handbook of non-ferrous metal powders – technologies and applications (Oxford: Elsevier Ltd)

    Google Scholar 

  5. Ramesh B and Senthilvelan T 2010 Int. J. Eng. Technol. 2 1

    Article  Google Scholar 

  6. Sharma P, Sharma S and Kandhuja D 2015 J. Asian Ceram. Soc. 3 352

    Article  Google Scholar 

  7. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  8. Savage N 2012 Nature 482 30

    Article  Google Scholar 

  9. Randviir E P, Brownson D A C and Banks C E 2014 Mater. Today 17 426

    Article  CAS  Google Scholar 

  10. Singh V, Joung D, Zhai L, Das S, Khondaker S I and Seal S 2012 Prog. Mater. Sci. 56 1178

    Article  Google Scholar 

  11. Saboori A, Pavese M, Badini C and Fino P 2017 Acta Metall. Sin. (Engl. Lett.) 30 675

  12. Saboori A, Dadkhak M and Pino P 2018 Metals 8 423

    Article  Google Scholar 

  13. Rashad M, Pan F, Yu Z, Asif M, Lin H and Pan R 2015 Prog. Nat. Sci. Mater. Int. 25 460

    Article  CAS  Google Scholar 

  14. Wang J, Li Z, Fan G, Pan H, Chen Z and Zhang D 2012 Scr. Mater. 66 594

    Article  CAS  Google Scholar 

  15. Li J L, Xiong Y C, Wang X D, Yan S J, Yang C, He W W et al 2015 Mater. Sci. Eng. A 626 400

  16. Li G and Xiong B 2017 J. Alloys Compd. 697 31

    Article  CAS  Google Scholar 

  17. Bartolucci S F, Paras J, Rafiee M A, Rafiee J, Lee S, Kapoor D et al 2011 Mater. Sci. Eng. A 528 7933

  18. An Y, Yang S, Wu H, Zhao E and Wang Z 2017 Mater. Des. 134 44

    Article  CAS  Google Scholar 

  19. Rashad M, Pan F, Tang A and Asif M 2014 Prog. Nat. Sci. Mater. Int. 24 101

    Article  CAS  Google Scholar 

  20. Bastwros M, Kim G Y, Zhu K, Zhang K, Wang S, Tang X et al 2014 Compos. Part B 60 111

    Article  CAS  Google Scholar 

  21. Berman D, Erdemir A and Sumant A V 2014 Mater. Today 17 31

    Article  CAS  Google Scholar 

  22. Iacob G, Ghica V G, Buzatu M, Buzatu T and Petrescu M I 2015 Compos. Part B 69 603

    Article  CAS  Google Scholar 

  23. Zhai W, Shi X, Yao J, Ibrahim A M M, Xu Z, Zhu Q et al 2015 Compos. Part B 70 149

    Article  CAS  Google Scholar 

  24. Kumar N M, Kumaran S S and Kumaraswamidhas L A 2016 Alexandria Eng. J. 55 19

    Article  Google Scholar 

  25. Ul Haq M I and Anand A 2018 Silicon 10 1819

    Article  CAS  Google Scholar 

  26. Ambigai R and Prabhu S 2017 Trans. Nonferrous Met. Soc. China 27 986

    Article  CAS  Google Scholar 

  27. Kumar H G P and Xavior M A 2016 Trans. Indian Inst. Met. 69 415

    Article  CAS  Google Scholar 

  28. Tabandeh-Khorshid M, Omrani E, Menezes P L and Rogathi P K 2016 Eng. Sci. Technol. 19 463

    Google Scholar 

  29. Zeng X, Yu J, Fu D, Zhang H and Teng J 2018 Vacuum 155 364

    Article  CAS  Google Scholar 

  30. Zhang J, Chen Z, Wu H, Zhao J and Jiang Z 2019 Surf. Coat. Technol. 358 907

    Article  CAS  Google Scholar 

  31. Fathy A, Abu-Oqail A and Wagih A 2018 Ceram. Int. 44 22135

    Article  CAS  Google Scholar 

  32. Şenel M C, Gürbüz M and Koç E 2018 Mater. Sci. Technol. Ser. 34 1980

    Article  Google Scholar 

  33. Gürbüz M, Şenel M C and Koç E 2018 J. Compos. Mater. 52 553

    Article  Google Scholar 

  34. Şenel M C, Gürbüz M and Koç E 2018 Compos. Part B 154 1

    Article  Google Scholar 

  35. Varol T and Canakci A 2015 Met. Mater. Int. 21 704

    Article  CAS  Google Scholar 

  36. Rahimian M, Ehsani N, Parvin N and Baharvandi H R 2009 J. Mater. Process. Technol. 209 5387

    Article  CAS  Google Scholar 

  37. Li J, Zhang X and Geng L 2019 Compos. Part A 121 487

    Article  CAS  Google Scholar 

  38. Liu R and Li D Y 2001 Wear 251 956

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Black Sea Advanced Technology Research and Application Center (KITAM) in Ondokuz Mayıs University (OMU) for SEM and XRD analyses. This work was supported by the Scientific Researched Project Department of Ondokuz Mayıs University under grant numbers PYO.MUH.1902.15.001 and grant number PYO.MUH.1904.16.002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Can Şenel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenel, M.C., Gürbüz, M. Microstructure and wear behaviour of graphene–\(\hbox {Si}_{\mathrm {3}}\hbox {N}_{\mathrm {4}}\) binary particle-reinforced aluminium hybrid composites. Bull Mater Sci 43, 148 (2020). https://doi.org/10.1007/s12034-020-02124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02124-4

Keywords

Navigation