当前位置: X-MOL 学术Steel Transl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Light Non-Magnetic Steels Based on the Fe–25 Mn–5 Ni–Al–C System
Steel in Translation Pub Date : 2020-01-01 , DOI: 10.3103/s0967091220010039
L. M. Kaputkina , A. G. Svyazhin , I. V. Smarygina , V. E. Kindop

Abstract The influence of aluminum (5–10%) and carbon (0.04–1.7%) contents on phase transformations, structure formation processes and mechanical properties of Fe–25 Mn–5 Ni–Al–C steels was studied theoretically and experimentally. The authors have estimated intervals of optimal crystallization regimes and subsequent deformation-thermal effects for obtaining austenitic steels with high specific strength. Hardness measurements on the sample section and mechanical tests in a wide interval of temperatures of cold, warm and hot deformation were performed, as well as the phase structure assessment of steels (alloys) on the basis of Fe–25 Mn–5 Ni–Al–C. In a cast state, an alloy with 5% of Al was non-magnetic, i.e., it had austenitic structure; alloys with 10–15% of Al were magnetic with two-phase structure (γ + α). Aluminum considerably increases deformation resistance. At the same time, values σ 1 and σ max grow, i.e., also deformation hardening grows and softening processes are slowed down. With deformation rate growth, the Al influence becomes stronger. Austenitic high-manganese alloys with 5% of Al, both with low and high carbon content, have rather high plasticity and durability, and differ in high austenite stability. Alloying with nickel increases plasticity. Alloys with Al less than 10% are rather plastic also in a cast state. High-manganese (from 25% of Mn) alloys with Al content to 5–7% can be considered as high-strength cold-resistant and heat-resistant with thermally and mechanically stable austenite up to carbon content ~1.5%.

中文翻译:

基于 Fe-25 Mn-5 Ni-Al-C 体系的轻质非磁性钢

摘要 从理论上和实验上研究了铝(5-10%)和碳(0.04-1.7%)含量对 Fe-25 Mn-5 Ni-Al-C 钢的相变、组织形成过程和力学性能的影响。作者估计了获得高比强度奥氏体钢的最佳结晶状态和随后的变形热效应的间隔。进行了样品截面的硬度测量和冷、温、热变形温度范围宽的机械测试,以及基于 Fe-25 Mn-5 Ni-Al 的钢(合金)的相结构评估-C。在铸造状态下,含 5% Al 的合金是非磁性的,即具有奥氏体结构;含有 10-15% Al 的合金具有两相结构 (γ + α) 的磁性。铝显着增加了变形阻力。同时,值σ 1 和σ max 增加,即变形硬化也增加并且软化过程减慢。随着变形率的增加,Al 的影响变得更强。含5%Al的奥氏体高锰合金,无论是低碳含量还是高碳含量,都具有较高的塑性和耐久性,但奥氏体稳定性较高。与镍合金化可增加塑性。铝含量低于 10% 的合金在铸造状态下也是相当塑性的。铝含量达到 5-7% 的高锰(从 Mn 的 25%)合金可以被认为是高强度的耐寒和耐热合金,具有热和机械稳定的奥氏体,碳含量高达 1.5%。变形硬化也会增加,软化过程也会减慢。随着变形率的增加,Al 的影响变得更强。含5%Al的奥氏体高锰合金,无论是低碳含量还是高碳含量,都具有较高的塑性和耐久性,但奥氏体稳定性较高。与镍合金化可增加塑性。铝含量低于 10% 的合金在铸造状态下也是相当塑性的。铝含量达到 5-7% 的高锰(从 Mn 的 25%)合金可以被认为是高强度的耐寒和耐热合金,具有热和机械稳定的奥氏体,碳含量高达 1.5%。变形硬化也会增加,软化过程也会减慢。随着变形率的增加,Al 的影响变得更强。含5%Al的奥氏体高锰合金,无论是低碳含量还是高碳含量,都具有较高的塑性和耐久性,但奥氏体稳定性较高。与镍合金化可增加塑性。铝含量低于 10% 的合金在铸造状态下也是相当塑性的。铝含量达到 5-7% 的高锰(从 Mn 的 25%)合金可以被认为是高强度的耐寒和耐热合金,具有热和机械稳定的奥氏体,碳含量高达 1.5%。和高奥氏体稳定性不同。与镍合金化可增加塑性。铝含量低于 10% 的合金在铸造状态下也是相当塑性的。铝含量达到 5-7% 的高锰(从 Mn 的 25%)合金可以被认为是高强度的耐寒和耐热合金,具有热和机械稳定的奥氏体,碳含量高达 1.5%。和高奥氏体稳定性不同。与镍合金化可增加塑性。铝含量低于 10% 的合金在铸造状态下也是相当塑性的。铝含量达到 5-7% 的高锰(从 Mn 的 25%)合金可以被认为是高强度的耐寒和耐热合金,具有热和机械稳定的奥氏体,碳含量高达 1.5%。
更新日期:2020-01-01
down
wechat
bug