当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Model of Effective Width and Fracture Conductivity for Hydraulic Fractures in Tight Reservoirs
Arabian Journal for Science and Engineering ( IF 1.518 ) Pub Date : 2020-05-21 , DOI: 10.1007/s13369-020-04614-3
Shan Jiang, Peng Chen, Min Yan, Botao Liu, Hong Liu, Hao Wang

Hydraulic fracturing technology is widely used in the development of tight reservoirs. Hydraulic fracture closure highly impacts oil and gas production in tight reservoirs, and a quantitative description of the effective width and fracture conductivity has a guiding significance for fracturing design and productivity prediction. In this paper, based on the mechanical characteristics of proppants in hydraulic fracturing, a fracture width model is first established for sandstone and shale reservoirs, and the effect of the closing pressure on the rock mechanics parameters of proppants is considered. Then, by the changes in fracture width and proppant permeability, a fracture conductivity model is built. Finally, the models are verified with existing experimental data, and are applied to analyze the influence of relevant parameters on the effective width and fracture conductivity of hydraulic fractures. Fracture closure is primarily affected by proppant deformation and embedment. An increase in the proppant elastic modulus can reduce proppant deformation and avoid fracture closure. A fracture containing large proppant more readily closes during the production process, and the closing pressure has a considerable effect on the proppant rock mechanical parameters, which can prevent the fracture from closing to maintain its conductivity. In this study, fracture closure and its conductivity are predicted, which is conducive to the production of tight reservoirs.
更新日期:2020-05-21

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug