当前位置: X-MOL 学术Int. J. of Precis. Eng. and Manuf.-Green Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laser-Assisted Milling of Turbine Blade Using Five-Axis Hybrid Machine Tool with Laser Module
International Journal of Precision Engineering and Manufacturing-Green Technology ( IF 4.2 ) Pub Date : 2020-04-24 , DOI: 10.1007/s40684-020-00217-3
Wan-Sik Woo , Choon-Man Lee

Laser-assisted machining (LAM) is known to be an innovative hybrid technique to enhance the machinability of difficult-to-cut materials. LAM is a method of machining with cutting tools after the machinability is improved by laser preheating. Most studies of LAM have focused mainly on turning methods. Laser-assisted milling (LAMill) processes, including grinding and drilling, are still in the early stages of research and are limited, as the laser heat source must be able to move continuously ahead of the tool. In recent years, some research has concentrated on processing simple three-dimensional (3D) shapes using LAMill, but more innovative research must be done before this method can be commercialized. Therefore, the objective of this study is to manufacture a turbine blade using a five-axis hybrid machine tool with a laser module to make progress toward the goal of the commercialization of LAMill. The manufacturing of the turbine blade using a five-axis LAMill method is attempted for the first time in this study. A thermal analysis was conducted to determine the cutting depth for LAMill. The machining procedure was divided into roughing and finishing steps in order to process the rectangular titanium alloy specimens into a blade shape. The experiments were performed under identical conditions to verify the effectiveness of LAMill compared to CM. The cutting force, surface roughness and hardness were measured and a surface analysis was conducted to compare the machining characteristics after machining.



中文翻译:

使用带有激光模块的五轴混合动力机床对涡轮叶片进行激光辅助铣削

众所周知,激光辅助加工(LAM)是一种创新的混合技​​术,可提高难切削材料的可加工性。LAM是在通过激光预热改善可加工性之后用切削工具进行加工的一种方法。LAM的大多数研究主要集中在车削方法上。包括磨削和钻孔在内的激光辅助铣削(LAMill)工艺仍处于研究的早期阶段,并且受到限制,因为激光热源必须能够连续地向前移动。近年来,一些研究集中在使用LAMill处理简单的三维(3D)形状上,但是在将该方法商业化之前,必须进行更多的创新研究。因此,这项研究的目的是使用带有激光模块的五轴混合机床制造涡轮叶片,从而朝着实现LAMill的商业化目标迈进。本研究首次尝试使用五轴LAMill方法制造涡轮叶片。进行热分析以确定LAMill的切削深度。加工程序分为粗加工和精加工步骤,以将矩形钛合金试样加工成叶片形状。实验在相同条件下进行,以验证与CM相比,LAMill的有效性。测量切削力,表面粗糙度和硬度,并进行表面分析以比较加工后的加工特性。本研究首次尝试使用五轴LAMill方法制造涡轮叶片。进行热分析以确定LAMill的切削深度。加工程序分为粗加工和精加工步骤,以将矩形钛合金试样加工成叶片形状。实验在相同条件下进行,以验证与CM相比,LAMill的有效性。测量切削力,表面粗糙度和硬度,并进行表面分析以比较加工后的加工特性。本研究首次尝试使用五轴LAMill方法制造涡轮叶片。进行热分析以确定LAMill的切削深度。加工程序分为粗加工和精加工步骤,以将矩形钛合金试样加工成叶片形状。实验在相同条件下进行,以验证与CM相比,LAMill的有效性。测量切削力,表面粗糙度和硬度,并进行表面分析以比较加工后的加工特性。加工程序分为粗加工和精加工步骤,以将矩形钛合金试样加工成叶片形状。实验在相同条件下进行,以验证与CM相比,LAMill的有效性。测量切削力,表面粗糙度和硬度,并进行表面分析以比较加工后的加工特性。加工程序分为粗加工和精加工步骤,以将矩形钛合金试样加工成叶片形状。实验在相同条件下进行,以验证LAMill与CM相比的有效性。测量切削力,表面粗糙度和硬度,并进行表面分析以比较加工后的加工特性。

更新日期:2020-04-24
down
wechat
bug