Skip to main content
Log in

Laser-Assisted Milling of Turbine Blade Using Five-Axis Hybrid Machine Tool with Laser Module

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Laser-assisted machining (LAM) is known to be an innovative hybrid technique to enhance the machinability of difficult-to-cut materials. LAM is a method of machining with cutting tools after the machinability is improved by laser preheating. Most studies of LAM have focused mainly on turning methods. Laser-assisted milling (LAMill) processes, including grinding and drilling, are still in the early stages of research and are limited, as the laser heat source must be able to move continuously ahead of the tool. In recent years, some research has concentrated on processing simple three-dimensional (3D) shapes using LAMill, but more innovative research must be done before this method can be commercialized. Therefore, the objective of this study is to manufacture a turbine blade using a five-axis hybrid machine tool with a laser module to make progress toward the goal of the commercialization of LAMill. The manufacturing of the turbine blade using a five-axis LAMill method is attempted for the first time in this study. A thermal analysis was conducted to determine the cutting depth for LAMill. The machining procedure was divided into roughing and finishing steps in order to process the rectangular titanium alloy specimens into a blade shape. The experiments were performed under identical conditions to verify the effectiveness of LAMill compared to CM. The cutting force, surface roughness and hardness were measured and a surface analysis was conducted to compare the machining characteristics after machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. TIPA(Korea Technology and Information Promotion Agency for SMEs). (2019). Technology roadmap for SME, http://smroadmap.smtech.go.kr/.

  2. Jackson, M. A., Asten, A. V., Morrow, J. D., Min, S. K., & Pfefferkorn, F. E. (2018). Energy consumption model for additive-subtractive manufacturing processes with case study. Int. J. Precis. Eng. Manuf.-Green Technol., 5(4), 459–466.

    Article  Google Scholar 

  3. Singh, T., Dureja, J. S., Dogra, M., & Bhatti, M. S. (2018). Environment friendly machining of Inconel 625 under nano-fluid minimum quantity lubrication (NMQL). Int. J. Precis. Eng. Manuf., 19(11), 1689–1697.

    Article  Google Scholar 

  4. Flynn, J. M., Shokrani, A., Newman, S. T., & Dhokia, V. (2016). Hybrid additive and subtractive machine tools—research and industrial developments. Int. J. Mach. Tools Manuf., 101, 79–101.

    Article  Google Scholar 

  5. Pervaiz, S., Anwar, S., Qureshi, I., & Ahmed, N. (2019). Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. Int. J. Precis. Eng. Manuf.-Green Technol., 6, 133–145.

    Article  Google Scholar 

  6. Brecher, C., Rosen, C. J., & Emonts, M. (2010). Laser-assisted milling of advanced materials. Phys. Procedia, 5, 259–272.

    Article  Google Scholar 

  7. Bermingham, M. J., Schaffarzyk, P., Palanisamy, S., & Dargusch, M. S. (2014). Laser-assisted milling strategies with different cutting tool paths. Int. J. Adv. Manuf. Technol., 74(9–12), 1487–1494.

    Article  Google Scholar 

  8. Feng, Y., Hung, T. P., Lu, Y. T., Lin, Y. F., Hsu, F. C., et al. (2018). Inverse analysis of Inconel 718 laser-assisted milling to achieve machined surface roughness. Int. J. Precis. Eng. Manuf., 19(11), 1611–1618.

    Article  Google Scholar 

  9. Joshi, A., Kansara, N., Das, S., Kuppan, P., & Venkatesan, K. (2014). A study of temperature distribution for laser assisted machining of Ti-6Al-4V alloy. Procedia Eng., 97, 1466–1473.

    Article  Google Scholar 

  10. Feng, Y., Hung, T. P., Lu, Y. T., Lin, Y. F., Hsu, F. C., et al. (2019). Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects. Int. J. Adv. Manuf. Technol., 100, 3185–3195.

    Article  Google Scholar 

  11. Feng, Y., Hung, T. P., Lu, Y. T., Lin, Y. F., Hsu, F. C., et al. (2019). Residual stress prediction in laser-assisted milling considering recrystallization effects. Int. J. Adv. Manuf. Technol., 102, 393–402.

    Article  Google Scholar 

  12. Park, S. S., Wei, Y., & Jin, X. L. (2018). Direct laser assisted machining with a sapphire tool for bulk metallic glass. CIRP Ann.-Manuf. Technol., 67, 193–196.

    Article  Google Scholar 

  13. Wu, X., & Chen, J. (2018). The temperature process analysis and control on laser-assisted milling of nickel-based superalloy. Int. J. Adv. Manuf. Technol., 98, 223–235.

    Article  Google Scholar 

  14. Guerrini, G., Lutey, A. H. A., Melkote, S. N., & Fortunato, A. (2018). High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride. J. Mater. Process. Technol., 252, 628–635.

    Article  Google Scholar 

  15. Li, Z., Zhang, F., Luo, X., Chang, W., Cai, Y., et al. (2019). Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization. J. Eur. Ceram. Soc., 39, 705–717.

    Article  Google Scholar 

  16. Langan, S. M., Ravindra, D., & Mann, A. B. (2019). Mitigation of damage during surface finishing of sapphire using laser-assisted machining. Precis. Eng., 56, 1–7.

    Article  Google Scholar 

  17. Ito, Y., Kizaki, T., Shinomoto, R., Ueki, M., Sugita, N., et al. (2017). High-efficiency and precision cutting of glass by selective laser-assisted milling. Precis. Eng., 47, 498–507.

    Article  Google Scholar 

  18. Woo, W. S., & Lee, C. M. (2015). A study of the machining characteristics of AISI 1045 steel and Inconel 718 with a cylindrical shape in laser-assisted milling. Appl. Therm. Eng. 91, 33–42.

    Article  Google Scholar 

  19. Kim, I. W., & Lee, C. M. (2016). A study on the machining characteristics of specimens with spherical shape using laser-assisted machining. Appl. Therm. Eng., 100, 636–645.

    Article  Google Scholar 

  20. Kim, D. H., & Lee, C. M. (2016). A study on the laser-assisted ball-end milling of difficult-to-cut materials using a new back-and-forth preheating method. Int. J. Adv. Manuf. Technol., 85, 1825–1834.

    Article  Google Scholar 

  21. Kim, I. W., & Lee, C. M. (2017). Investigation into the machining characteristics of AISI 1045 steel and Inconel 718 for an ellipsoidal shape using laser-assisted contouring and ramping machining. Int. J. Precis. Eng. Manuf., 18(9), 1231–1238.

    Article  Google Scholar 

  22. Kim, E. J., & Lee, C. M. (2018). A study on the machining characteristics of curved workpiece using laser-assisted milling with different tool paths in Inconel 718. Metals, 8, 968.

    Article  Google Scholar 

  23. Woo, W. S., & Lee, C. M. (2018). A study on the optimum machining conditions and energy efficiency of a laser-assisted fillet milling. Int. J. Precis. Eng. Manuf.-Green Technol., 5(5), 593–604.

    Article  Google Scholar 

  24. Hedberg, G. K., & Shin, Y. C. (2015). Laser assisted milling of Ti-6Al-4V ELI with the analysis of surface integrity and its economics. Lasers Manuf. Mater. Process., 2, 164–185.

    Article  Google Scholar 

  25. Ding, H., Shen, N., & Shin, Y. C. (2012). Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J. Mater. Process. Technol., 212, 601–613.

    Article  Google Scholar 

  26. Tsili, M. A., Amoiralis, E. I., Kladas, A. G., & Souflaris, A. T. (2012). Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model. Int. J. Therm. Sci., 53, 188–201.

    Article  Google Scholar 

  27. Woo, W. S., & Lee, C. M. (2018). A study on the edge chipping according to spindle speed and inclination angle of workpiece in laser-assisted milling of silicon nitride. Opt. Laser Technol., 99, 351–362.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2B5B03070206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Man Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, WS., Lee, CM. Laser-Assisted Milling of Turbine Blade Using Five-Axis Hybrid Machine Tool with Laser Module. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 783–793 (2021). https://doi.org/10.1007/s40684-020-00217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00217-3

Keywords

Navigation