当前位置: X-MOL 学术Macromol. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance Enhancement of PVDF/LiCIO 4 Based Nanocomposite Solid Polymer Electrolytes via Incorporation of Li 0.5 La 0.5 TiO 3 Nano Filler for All-Solid-State Batteries
Macromolecular Research ( IF 2.8 ) Pub Date : 2020-03-30 , DOI: 10.1007/s13233-020-8096-y
Pazhaniswamy Sivaraj , Karuthedath Parameswaran Abhilash , Balakrishnan Nalini , Pandurangam Perumal , Kalimuthu Somasundaram , Paneerselvam Christopher Selvin

Experimental and computational techniques have been applied to investigate the influence of Li0.5La0.5TiO3 nanoparticles on the ionic conductivity of the poly(vinylidene fluoride) (PVDF)/LiClO4 nanocomposite solid polymer electrolyte. The theoretical evidence facilitated to suggest a plausible mechanism for Li-ion conduction across the PVDF/LiClO4/Li0.5La0.5TiO3 based solid polymer electrolytes. The solid composite polymer electrolyte with 30wt% of Li0.5La0.5TiO3 (LLTO) nanofiller exhibited an unprecedented ionic conductivity of 2.3687 × 10−3 S cm−1 at room temperature. The addition of LLTO nanoparticles to the polymer matrix enhanced its ionic conductivity by two orders of magnitude. The activation energy (Ea) and total transference number (t) were estimated to be 0.29 eV and 0.853, respectively. The interaction between the filler and polymer matrix has been inferred by the density functional theory (DFT)-IR analysis. The DFT calculations have been performed on the above system using the basis set of B3LYP-LANL2DZ. The calculated IR spectra were compared with the experimental FTIR data, which allowed us to propose accurate vibrational assignments and to clarify the complex IR vibration of the samples. All-solid-state Li2FeSiO4/CPVDF/LiClO4/LLTO graphite lithium cell has been fabricated using the highest Li-ion conducting PVDF/LiClO4/LLTO composite polymer electrolyte. The all-solid-state cell exhibits an excellent initial specific capacity of 87.13 and 73.24 mAh g−1 after 30 cycles, demonstrating higher capacity retention. The findings provide an avenue for exploring the simple all-solid-state lithium batteries, which are potential candidates for next-generation energy storage technology.


中文翻译:

通过掺入用于全固态电池的Li 0.5 La 0.5 TiO 3纳米填料,增强了PVDF / LiCIO 4基纳米复合固体聚合物电解质的性能

已应用实验和计算技术来研究Li 0.5 La 0.5 TiO 3纳米颗粒对聚偏二氟乙烯(PVDF)/ LiClO 4纳米复合固体聚合物电解质的离子电导率的影响。理论证据有助于提出一个合理的机制,说明锂离子跨PVDF / LiClO 4 / Li 0.5 La 0.5 TiO 3固体聚合物电解质的传导。具有30 wt%的Li 0.5 La 0.5 TiO 3(LLTO)纳米填料的固体复合聚合物电解质表现出前所未有的离子电导率2.3687×10 -3在室温下为S cm -1。将LLTO纳米颗粒添加到聚合物基质中可将其离子电导率提高两个数量级。活化能(E a)和总转移数(t)分别估计为0.29 eV和0.853。填料与聚合物基体之间的相互作用已通过密度泛函理论(DFT)-IR分析推断出来。DFT计算是在上述系统上使用B3LYP-LANL2DZ进行的。将计算出的红外光谱与实验FTIR数据进行比较,这使我们能够提出准确的振动分配并阐明样品的复杂IR振动。全固态L i2 FeSiO 4/ CPVDF / LiClO 4 / LLTO石墨锂电池是使用导电性最高的PVDF / LiClO 4 / LLTO复合聚合物电解质制成的。全固态电池在30个循环后展现出出色的初始比容量,分别为87.13和73.24 mAh g -1,表明具有更高的容量保持率。这些发现为探索简单的全固态锂电池提供了途径,这些电池是下一代能量存储技术的潜在候选者。
更新日期:2020-03-30
down
wechat
bug