Skip to main content
Log in

Performance Enhancement of PVDF/LiCIO4 Based Nanocomposite Solid Polymer Electrolytes via Incorporation of Li0.5La0.5TiO3 Nano Filler for All-Solid-State Batteries

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2020

This article has been updated

Abstract

Experimental and computational techniques have been applied to investigate the influence of Li0.5La0.5TiO3 nanoparticles on the ionic conductivity of the poly(vinylidene fluoride) (PVDF)/LiClO4 nanocomposite solid polymer electrolyte. The theoretical evidence facilitated to suggest a plausible mechanism for Li-ion conduction across the PVDF/LiClO4/Li0.5La0.5TiO3 based solid polymer electrolytes. The solid composite polymer electrolyte with 30wt% of Li0.5La0.5TiO3 (LLTO) nanofiller exhibited an unprecedented ionic conductivity of 2.3687 × 10−3 S cm−1 at room temperature. The addition of LLTO nanoparticles to the polymer matrix enhanced its ionic conductivity by two orders of magnitude. The activation energy (Ea) and total transference number (t) were estimated to be 0.29 eV and 0.853, respectively. The interaction between the filler and polymer matrix has been inferred by the density functional theory (DFT)-IR analysis. The DFT calculations have been performed on the above system using the basis set of B3LYP-LANL2DZ. The calculated IR spectra were compared with the experimental FTIR data, which allowed us to propose accurate vibrational assignments and to clarify the complex IR vibration of the samples. All-solid-state Li2FeSiO4/CPVDF/LiClO4/LLTO graphite lithium cell has been fabricated using the highest Li-ion conducting PVDF/LiClO4/LLTO composite polymer electrolyte. The all-solid-state cell exhibits an excellent initial specific capacity of 87.13 and 73.24 mAh g−1 after 30 cycles, demonstrating higher capacity retention. The findings provide an avenue for exploring the simple all-solid-state lithium batteries, which are potential candidates for next-generation energy storage technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 07 April 2020

    Figure 3 should be corrected as follows:

  • 07 April 2020

    Figure 3 should be corrected as follows:

  • 07 April 2020

    Figure 3 should be corrected as follows:

References

  1. H. S. Min, J. M. Ko, and D. W. Kim, J. Power Sources., 119, 469 (2003).

    Google Scholar 

  2. B. Scrosati, F. Croe, and L. Pcrsi, J. Electrochem. Soc, 147, 1718 (2000).

    CAS  Google Scholar 

  3. H. S. Kim, J. H. Shin, S. I. Moon, and S. P. Kim, Electrochim. Acta, 48, 1573 (2003).

    CAS  Google Scholar 

  4. H. Lu, J. Du, C. Yu, X. Wang, Y. Gao, W. Xu, A. Liu, X. Lu, and Y. Chen, MacromoL Res., DOI: 10.1007/s13233-020-8073-5 (2020).

    Google Scholar 

  5. S. C. Ryu, J. Y. Kim, C. Cho, and W. N. Kim, MacromoL Res., 28, 118 (2020).

    CAS  Google Scholar 

  6. G. B. Appetecchi, F. Croce, L. Persi, F. Rond, and B. Scrosati, J. Electro-chem. Soc, 147, 4448 (2000).

    CAS  Google Scholar 

  7. L. M. Bronstein, R. L. Karlinsey, K. Ritter, C. G. Joo, B. Stein, and J. W. Zanziger, J. Mater. Chem., 14, 1812 (2004).

    CAS  Google Scholar 

  8. J. W. Kim, K. S. Ji, J. P. Lee, and J. W. Park, J. Power Sources, 119, 415 (2003).

    Google Scholar 

  9. A. M. Stephan and K. S. Nahm, Polymer, 47, 5952 (2006).

    CAS  Google Scholar 

  10. X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang and S. Dong, Electrochim. Acta, 46, 1829 (2001).

    CAS  Google Scholar 

  11. Y. J. Wang, Y. Pan, and D. Kim, J. Power Sources, 159, 690 (2006).

    CAS  Google Scholar 

  12. A. C. Balazs, T. Emrick, and T. P. Russell, Science, 314, 1107 (2006).

    CAS  PubMed  Google Scholar 

  13. K. Malekshahinezhad, A. A. khaneghah, and H. Behniafar, MacromoL Res, DOI: 10.1007/sl3233-020-8067-3 (2019).

    Google Scholar 

  14. Inugama, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihar, Solid State Commun., 86, 689 (1993).

    Google Scholar 

  15. K. P. Abhilash, P. Christopher Selvin, B. Nalini, K. Somasundaram, P. Sivaraj, and A. Chandra Bose, J. Phys. Chem Solids, 91, 114 (2016).

    CAS  Google Scholar 

  16. K. P. Abhilash, P. Sivaraj, P. Christopher Selvin, B. Nalini, and K. Somasundaram, Ceram Int., 41, 13823 (2015).

    CAS  Google Scholar 

  17. W. Liu, N. Liu, J. Sun, P. C. Hsu, Y. Li, H. W. Lee, and Y. Cui, Nano Lett., 15, 2740 (2015).

    CAS  PubMed  Google Scholar 

  18. C. Wang, X. W. Zhang, and A. J. Appleby, J. Electrochem. Soc., 152, 205 (2005)

    Google Scholar 

  19. P. Sivaraj, B. Nalini, K. P. Abhilash, D. Lakshmi, P. Christopher Selvin, and P. Balraju, J. Alloys Compels., 740, 1116 (2018).

    CAS  Google Scholar 

  20. W. Kohn and L. Sham, J. Phys. Rev., 140, 1133 (1965).

    Google Scholar 

  21. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Mole-cules, Oxford University Press, Oxford, Clarendon, 1989.

    Google Scholar 

  22. A. D. Becke J. Chem. Phys, 98, 5648 (1993).

    CAS  Google Scholar 

  23. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 157, 200 (1989).

    CAS  Google Scholar 

  24. P. J. Hay and W. R. Wadt J. Chem. Phys., 82, 299 (1985).

    CAS  Google Scholar 

  25. C. Lee, W. Yang, and R. G. Parr, Phys. Rev B, 37, 785 (1988).

    CAS  Google Scholar 

  26. S. S. Chio, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K. S. Han, Electro-Electrochim. Acta., 50, 339 (2004).

    Google Scholar 

  27. D. T. Swamy, K. E. Babu, and V. Veeraiah, Bull. Mater. Set, 36, 1115 (2013).

    CAS  Google Scholar 

  28. C. L. Yang, Z. H. Li, W. J. Li, H. Y. Liu, Q. Z. Xiao, G. T. Lei, and Y. H. Ding, J. Membr. Set, 495, 341 (2015).

    CAS  Google Scholar 

  29. L. O. Faria and R. L. Moreira, J. Pofym. Sci. B: Pofym. Phys, 38, 34 (2000).

    CAS  Google Scholar 

  30. X. Zhen, L. Zhang, M. Shi, L. Li, L. Cheng, Z. Jiao, W. Yang, and Y. Ding, Macromoi. Res, 28, 266 (2020).

    CAS  Google Scholar 

  31. Y. Z. Zhangand, C. K. Chan, J. Phys. Chem. A, 107, 5956 (2003).

    Google Scholar 

  32. P. G. Pickup, Chem. Soc. Faraday. Trans., 86, 3631 (1990).

    CAS  Google Scholar 

  33. M. Sethupathy, V. Sethuraman, and P. Manisankar, Soft Nanoscience Lett., 3, 37 (2013).

    CAS  Google Scholar 

  34. M. Romero, R. Faccio, and A. W. Mombru, Mater. Lett., 172, 1 (2016).

    CAS  Google Scholar 

  35. L. Wang, W. Yang, X. D. Li, and G. Evans, Electrochem. Solid State Lett., 13, 7 (2010).

    Google Scholar 

  36. Z. X. Wang, X. J. Huang, and L. Q. Chen, Electrochem. Solid State Lett, 6, 40 (2003).

    Google Scholar 

  37. W. Wieczorek, Z. Florjanczyk, and J. R. Stevens, Electrochim. Acta, 40, 2251 (1995).

    CAS  Google Scholar 

  38. A. Dawar and A. Chandra, Phys. Lett A, 376, 3604 (2012).

    CAS  Google Scholar 

  39. S. Stramare, V. Thangadurai, and W. Weppner, Chem. Mater., 15, 3974 (2003).

    CAS  Google Scholar 

  40. L. Simon, L. Ruban, and A. Kumar, Mater. Res. Innov., 21, 249 (2017).

    Google Scholar 

  41. Y. Ding, P. Zhang, Z. Long, Y. Jiang, and F. Xu, J. Alloys Compds., 487, 507 (2009).

    CAS  Google Scholar 

  42. X. Wu, J. Huang, S. Yu, P. Ruan, R. Sun, and C.-P. Wong, MacromoL Res., DOI: 10.1007/sl3233-020-8049-5 (2019).

    Google Scholar 

  43. S. A. Hashmi and S. Chandra, J. Mater. Sci. Eng., 34, 18 (1995).

    Google Scholar 

  44. P. Sivaraj, K. P. Abhilash, B. Nalini, P. Christopher Selvin, S. Goel, and S. K. Yadav, J. Am. Ceram. Soc, 103, 1685 (2020).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paneerselvam Christopher Selvin.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: Mr. P. Sivaraj thanks to the Council of Scientific Industrial Research (CSIR), Govt. of India, New Delhi, for providing the necessary financial support through the Senior Research Fellowship (SRF) (File No:09/0472(181)-2018-EMR-I) for the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraj, P., Abhilash, K.P., Nalini, B. et al. Performance Enhancement of PVDF/LiCIO4 Based Nanocomposite Solid Polymer Electrolytes via Incorporation of Li0.5La0.5TiO3 Nano Filler for All-Solid-State Batteries. Macromol. Res. 28, 739–750 (2020). https://doi.org/10.1007/s13233-020-8096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8096-y

Keywords

Navigation