当前位置: X-MOL 学术Biochip J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrophoresis — A Microfluidic Principle for Directed Particle Migration in Flow
BioChip Journal ( IF 5.5 ) Pub Date : 2020-03-16 , DOI: 10.1007/s13206-020-4107-5
Sungyoung Choi

Despite the stereotype that secondary flow fields induced by surface grooves are effective for microfluidic mixing and increase the entropy of different fluid flows, many efforts have been made to utilize the grooves for particle separation and focusing, decreasing the entropy of particle distribution. As part of these efforts, hydrophoresis has been proposed to define deterministic particle trajectories in grooved microchannels. Due to the simple, cloggingfree, and high-throughput characteristics, hydrophoresis has become increasingly promising for blood separation in clinical applications and sheathless particle focusing in flow cytometric applications. In this review, I introduce and summarize the basic physics, design parameters, design principles, and applications of hydrophoresis to improve the fundamental understanding of hydrophoresis and expand its use. I also discuss the challenges of hydrophoresis and forecast its future direction.

中文翻译:

电泳—微流体原理,指导颗粒在流动中的迁移

尽管刻板印象是由表面沟槽引起的次级流场对于微流体混合有效并且增加了不同流体流的熵,但是人们已经做出了许多努力来利用沟槽进行颗粒分离和聚焦,从而减小了颗粒分布的熵。作为这些努力的一部分,提出了电泳技术来定义带沟槽的微通道中确定性的粒子轨迹。由于简单,无堵塞和高通量的特性,在临床应用中进行血液分离和在流式细胞仪应用中进行无鞘颗粒聚焦时,电泳已越来越有希望。在这篇评论中,我介绍并总结了基本物理原理,设计参数,设计原理,电泳技术及其应用,以提高对电泳技术的基本了解并扩大其用途。我还将讨论电泳技术的挑战并预测其未来的发展方向。
更新日期:2020-03-16
down
wechat
bug