Skip to main content
Log in

Hydrophoresis — A Microfluidic Principle for Directed Particle Migration in Flow

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Despite the stereotype that secondary flow fields induced by surface grooves are effective for microfluidic mixing and increase the entropy of different fluid flows, many efforts have been made to utilize the grooves for particle separation and focusing, decreasing the entropy of particle distribution. As part of these efforts, hydrophoresis has been proposed to define deterministic particle trajectories in grooved microchannels. Due to the simple, cloggingfree, and high-throughput characteristics, hydrophoresis has become increasingly promising for blood separation in clinical applications and sheathless particle focusing in flow cytometric applications. In this review, I introduce and summarize the basic physics, design parameters, design principles, and applications of hydrophoresis to improve the fundamental understanding of hydrophoresis and expand its use. I also discuss the challenges of hydrophoresis and forecast its future direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Khoo, B.L., Grenci, G., Lim, Y.B., Lee, S.C., Han, J., & Lim, C.T. Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device. Nat. Protoc.13, 34–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Ma, Y.-H.V., Middleton, K., You, L. & Sun, Y. A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst. Nanoeng.4, 17104 (2018).

    Article  CAS  Google Scholar 

  3. Cho, H., Kim, J., Song, H., Sohn, K.Y., Jeon, M., & Han, K.-H. Microfluidic technologies for circulating tumor cell isolation. Analyst143, 2936–2970 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Khoo, B.L., Grenci, G., Jing, T., Lim, Y.B., Lee, S.C., Thiery, J.P., Han, J., & Lim, C.T. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment. Sci. Adv.2, e1600274 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U. J., Tompkins, R.G., Haber, D.A., & Toner, M. Isolation of rare circulating tumor cells in cancer patients by microchip technology. Nature450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin, Z., Luo, G., Du, W., Kong, T., Liu, C., & Liu, Z. Recent advances in microfluidic platforms applied in cancer metastasis: Circulating tumor cells’ (CTCs) isolation and tumor-on-a-chip. Small16, e1903899 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. Karabacak, N.M., Spuhler, P.S., Fachin, F., Lim, E. J., Pai, V., Ozkumur, E., Martel, J.M., Kojic, N., Smith, K., Chen, P.I., Yang, J., Hwang, H., Morgan, B., Trautwein, J., Barber, T.A., Stott, S.L., Maheswaran, S., Kapur, R., Haber, D.A., & Toner, M. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc.9, 694–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, Y., Xi, H., Wei, B., Cui, J., Zhang, K., Li, H., Cai, A., Shen, W., Li, J., Rosell, R., Chao, J., Chen, T., Klempner, S., Qiao, Z., & Chen, L. Association between liquid biopsy and prognosis of gastric cancer patients: A systematic review and meta-analysis. Front. Oncol.9, 1222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rossi, G. & Ignatiadis, M. Promises and pitfalls of using liquid biopsy for precision medicine. Cancer Res.79, 2798–2804 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Lim, S.B., Di Lee, W., Vasudevan, J., Lim, W.-T. & Lim, C.T. Liquid biopsy: one cell at a time. npj Precis. Oncol.3, 23 (2019).

    Article  Google Scholar 

  11. Di Carlo, D. Technologies for the directed evolution of cell therapies. SLAS Technol.24, 359–372 (2019).

    Article  PubMed  CAS  Google Scholar 

  12. Campos-González, R., Skelley, A.M., Gandhi, K., Inglis, D.W., Sturm, J.C., Civin, C.I., & Ward, T. Deterministic lateral displacement: The next-generation CAR T-cell processing? SLAS Technol.23, 338–351 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Chiu, P.-L., Chang, C.-H., Lin, Y.-L., Tsou, P.-H. & Li, B.-R. Rapid and safe isolation of human peripheral blood B and T lymphocytes through spiral microfluidic channels. Sci. Rep.9, 8145 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vormittag, P., Gunn, R., Ghorashian, S. & Veraitch, F.S. A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol.53, 164–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Ito, Y. & Shinomiya, K. A new continuous-flow cell separation method based on cell density: Principle, apparatus, and preliminary application to separation of human buffy coat. J. Clin. Apher.16, 186–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Feige, U., Overwien, B. & Sorg, C. Purification of human blood monocytes by hypotonic density gradient centrifugation in Percoll. J. Immunol. Methods54, 309–315 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, K., Marshall, M.K., Garza, G. & Pappas, D. Open-tubular capillary cell affinity chromatography: Single and tandem blood cell separation. Anal. Chem.80, 2118–2124 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Hertz, C.M., Graves, D.J., Lauffenburger, D.A. & Serota, F.T. Use of cell affinity chromatography for separation of lymphocyte subpopulations. Biotechnol. Bioeng.27, 603–612 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Meyer, T.P., Zehnter, I., Hofmann, B., Zaisserer, J., Burkhart, J., Rapp, S., Weinauer, F., Schmitz, J. & Illert, W.E. Filter Buffy Coats (FBC): a source of peripheral blood leukocytes recovered from leukocyte depletion filters. J. Immunol. Methods307, 150–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. He, M., Huang, H., Wang, M., Chen, A., Ning, X., Yu, K., Li, Q., Li, W., Ma, L., Chen, Z., Wang, X., & Sun, Q. Fluorescence-activated cell sorting analysis of heterotypic cell-in-cell structures. Sci. Rep.5, 9588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukuda, H., Takahashi, J., Watanabe, K., Hayashi, H., Morizane, A., Koyanagi, M., Sasai, Y., & Hashimoto, N. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells24, 763–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Handgretinger, R., Lang, P., Schumm, M., Taylor, G., Neu, S., Koscielnak, E., Niethammer, D., & Klingebiel, T. Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified by magnetic-activated cell sorting. Bone Marrow Transplant.21, 987–993 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Govers, C., Berrevoets, C., Treffers-Westerlaken, E., Broertjes, M. & Debets, R. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells. Hum. Gene Ther: Methods.23, 213–224 (2012).

    Article  CAS  Google Scholar 

  24. Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H. & Quake, S.R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol.17, 1109 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, X., Bessette, P.H., Qian, J., Meinhart, C.D., Daugherty, P.S., & Soh, H.T. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. U. S. A.102, 15757–15761 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X.-B., Yang, J., Huang, Y., Vykoukal, J., Becker, F.F., & Gascoyne, P.R. Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem.72, 832–839 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams, J.D., Kim, U. & Soh, H.T. Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. U. S. A.105, 18165–18170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inglis, D.W., Riehn, R., Sturm, J.C. & Austin, R.H. Microfluidic high gradient magnetic cell separation. J. Appl. Phys.99, 08K101 (2006).

    Article  CAS  Google Scholar 

  29. Jung, J. & Han, K.-H. Lateral-driven continuous magnetophoretic separation of blood cells. Appl. Phys. Lett.93, 223902 (2008).

    Article  CAS  Google Scholar 

  30. MacDonald, M.P., Spalding, G.C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature426, 421–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, M.M., Tu, E., Raymond, D.E., Yang, J.M., Zhang, H., Hagen, N., Dees, B., Mercer, E.M., Forster, A.H., Kariv, I., Marchand, P.J., & Butler, W.F. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol.23, 83–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Petersson, F., Åberg, L., Swärd-Nilsson, A.-M. & Laurell, T. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem.79, 5117–5123 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip9, 3354–3359 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Li, X., Chen, W., Liu, G., Lu, W. & Fu, J. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip14, 2565–2575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sethu, P., Sin, A., & Toner, M. Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip6, 83–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science304, 987–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Morton, K.J., Loutherback, K., Inglis, D.W., Tsui, O.K., Sturm, J.C., Chou, S.Y., & Austin, R.H. Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc. Natl. Acad. Sci. U. S. A.105, 7434–7438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McGrath, J., Jimenez, M. & Bridle, H. Deterministic lateral displacement for particle separation: a review. Lab Chip14, 4139–4158 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Zeming, K.K., Ranjan, S. & Zhang, Y. Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat. Commun.4, 1625 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Davis, J.A., Inglis, D.W., Morton, K.J., Lawrence, D.A., Huang, L.R., Chou, S.Y., Sturm, J.C., & Austin, R.H. Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. U. S. A.103, 14779–14784 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamada, M., Nakashima, M., & Seki, M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem.76, 5465–5471 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Vig, A.L. & Kristensen, A. Separation enhancement in pinched flow fractionation. Appl. Phys. Lett.93, 203507 (2008).

    Article  CAS  Google Scholar 

  43. Nho, H.W. & Yoon, T.H. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Lab Chip13, 773–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Yamada, M. & Seki, M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip5, 1233–1239 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Di Carlo, D. Inertial microfluidics. Lab Chip9, 3038–3046 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N.-T., Warkiani, M.E. & Li, W. Fundamentals and applications of inertial microfluidics: a review. Lab Chip16, 10–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Chung, A.J. A minireview on inertial microfluidics fundamentals: Inertial particle focusing and secondary flow. BioChip J.13, 53–63 (2019).

    Article  CAS  Google Scholar 

  48. Kim, G.-Y., Han, J.-I. & Park, J.-K. Inertial microfluidics-based cell sorting. BioChip J.12, 257–267 (2018).

    Article  CAS  Google Scholar 

  49. Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U. S. A.104, 18892–18897 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sollier, E., Go, D.E., Che, J., Gossett, D.R., O’Byrne, S., Weaver, W.M., Kummer, N., Rettig, M., Goldman, J., Nickols, N., McCloskey, S., Kulkarni, R.P., & Di Carlo, D. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip14, 63–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, Z., Chen, Y., Wang, M. & Chung, A.J. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip16, 532–542 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Warkiani, M.E., Khoo, B.L., Wu, L., Tay, A.K., Bhagat, A.A., Han, J. & Lim, C.T. Ultra-fast, labelfree isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc.11, 134–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X., Liedert, C., Liedert, R. & Papautsky, I. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Lab Chip16, 1821–1830 (2016).

    Article  PubMed  Google Scholar 

  54. Choi, S. & Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip7, 890–897 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Choi, S., Song, S., Choi, C. & Park, J.-K. Continuous blood cell separation by hydrophoretic filtration. Lab Chip7, 1532–1538 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Choi, S., Song, S., Choi, C. & Park, J.-K. Sheathless focusing of microbeads and blood cells based on hydrophoresis. Small4, 634–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Choi, S. & Park, J.-K. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays. Anal. Chem.80, 3035–3039 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Choi, S. & Park, J.-K. Mirror-embedded microchannel for three-dimensional measurement of particle position. Appl. Phys. Lett.93, 191909 (2008).

    Article  CAS  Google Scholar 

  59. Choi, S., Song, S., Choi, C. & Park, J.-K. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal. Chem.81, 50–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Choi, S., Song, S., Choi, C. & Park, J.-K. Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal. Chem.81, 1964–1968 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Choi, S. & Park, J.-K. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane). Lab Chip9, 1962–1965 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, S. & Park, J.-K. Optically coated mirror-embedded microchannel to measure hydrophoretic particle ordering in three dimensions. Small5, 2205–2211 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Choi, S., Kim, S.-H. & Park, J.-K. Optical path-length modulation for three-dimensional particle measurement in mirror-embedded microchannels. Lab Chip10, 335–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Choi, S., Ku, T., Song, S., Choi, C. & Park, J.-K. Hydrophoretic high-throughput selection of platelets in physiological shear-stress range. Lab Chip11, 413–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Song, S. & Choi, S. Design rules for size-based cell sorting and sheathless cell focusing by hydrophoresis. J. Chromatogr. A1302, 191–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Song, S. & Choi, S. Field-free, sheathless cell focusing in exponentially expanding hydrophoretic channels for microflow cytometry. Cytometry, Part A83, 1034–1040 (2013).

    Article  Google Scholar 

  67. Song, S. & Choi, S. Continuous medium exchange and cell isolation by size-selective passage through slanted micro-obstacles. J. Micromech. Microeng.24, 025007 (2014).

    Article  CAS  Google Scholar 

  68. Song, S. & Choi, S. Inertial modulation of hydrophoretic cell sorting and focusing. Appl. Phys. Lett.104, 074106 (2014).

    Article  CAS  Google Scholar 

  69. Song, S., Kim, M. S. & Choi, S. Smart microfluidic pipette tip enabled by flow-rate insensitive particle ordering. Small10, 4123–4129 (2014).

    CAS  PubMed  Google Scholar 

  70. Song, S., Kim, M.S., Lee, J. & Choi, S. A continuous-flow microfluidic syringe filter for size-based cell sorting. Lab Chip15, 1250–1254 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, B. & Choi, S. Smart pipette and microfluidic pipette tip for blood plasma separation. Small12, 190–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, B., Lee, J.K. & Choi, S. Continuous sorting and washing of cancer cells from blood cells by hydrophoresis. BioChip J.10, 81–87 (2015).

    Article  CAS  Google Scholar 

  73. Kim, B., Choi, Y.J., Seo, H., Shin, E.-C. & Choi, S. Deterministic migration-based separation of white blood cells. Small12, 5159–5168 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, B., Oh, S., You, D. & Choi, S. Microfluidic pipette tip for high-purity and high-throughput blood plasma separation from whole blood. Anal. Chem.89, 1439–1444 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. You, D., Oh, S., Kim, B., Hahn, Y.K. & Choi, S. Rapid preparation and single-cell analysis of concentrated blood smears using a high-throughput blood cell separator and a microfabricated grid film. J. Chromatogr. A1507, 141–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, B., You, D., Kim, Y.-J., Oh, I. & Choi, S. Motorized smart pipette for handheld operation of a microfluidic blood plasma separator. Sens. Actuators, B267, 581–588 (2018).

    Article  CAS  Google Scholar 

  77. Kim, B., Shin, S., Lee, Y., Um, C., You, D., Yun, H., & Choi, S. High-throughput residual white blood cell counter enabled by microfluidic cell enrichment and reagent-containing patch integration. Sens. Actuators, B283, 549–555 (2019).

    Article  CAS  Google Scholar 

  78. Shin, S., Kim, B., Kim, Y.-J. & Choi, S. Integrated microfluidic pneumatic circuit for point-of-care molecular diagnostics. Biosens. Bioelectron.133, 169–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, B., Kang, D. & Choi, S. Handheld microflow cytometer based on a motorized smart pipette, a microfluidic cell concentrator, and a miniaturized fluorescence microscope. Sensors19, 2761 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  80. Kim, B., Kim, K.H., Chang, Y., Shin, S., Shin, E.-C. & Choi, S. One-step microfluidic purification of white blood cells from whole blood for immunophenotyping. Anal. Chem.91, 13230–13236 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, E., Kim, B. & Choi, S. An open-source programmable smart pipette for portable cell separation and counting. RSC Adv.9, 41877–41885 (2019).

    Article  CAS  Google Scholar 

  82. Stroock, A.D., Dertinger, S.K., Ajdari, A., Mezić, I., Stone, H.A., & Whitesides, G.M. Chaotic mixer for microchannels. Science295, 647–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Stroock, A.D., Dertinger, S.K., Whitesides, G.M. & Ajdari, A. Patterning flows using grooved surfaces. Anal. Chem.74, 5306–5312 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, D.S., Lee, S.W., Kwon, T.H. & Lee, S.S. A barrier embedded chaotic micromixer. J. Micromech. Microeng.14, 798–805 (2004).

    Article  CAS  Google Scholar 

  85. Wang, H., Iovenitti, P., Harvey, E. & Masood, S. Numerical investigation of mixing in microchannels with patterned grooves. J. Micromech. Microeng.13, 801 (2003).

    Article  Google Scholar 

  86. Schönfeld, F., & Hardt, S. Simulation of helical flows in microchannels. AIChE J.50, 771–778 (2004).

    Article  CAS  Google Scholar 

  87. Kang, T.G. & Kwon, T.H. Colored particle tracking method for mixing analysis of chaotic micromixers. J. Micromech. Microeng.14, 891–899 (2004).

    Article  Google Scholar 

  88. Lynn, N.S. & Dandy, D.S. Geometrical optimization of helical flow in grooved micromixers. Lab Chip7, 580–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Belliveau, N.M., Huft, J., Lin, P.J., Chen, S., Leung, A.K., Leaver, T.J., Wild, A.W., Lee, J.B., Taylor, R.J., Tam, Y.K., Hansen, C.L., & Cullis, P.R. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther.- Nucleic Acids1, e37 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Maeki, M., Saito, T., Sato, Y., Yasui, T., Kaji, N., Ishida, A., Tani, H., Baba, Y., Harashima, H., & Tokeshi, M. A strategy for synthesis of lipid nano-particles using microfluidic devices with a mixer structure. RSC Adv.5, 46181–46185 (2015).

    Article  CAS  Google Scholar 

  91. Stott, S.L., Hsu, C.H., Tsukrov, D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, S.M., Shah, A.M., Smas, M.E., Korir, G.K., Floyd, F.P., Jr., Gilman, A.J., Lord, J.B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L.V., Lee, R.J., Isselbacher, K.J., Maheswaran, S., Haber, D.A., & Toner, M. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U. S. A.107, 18392–18397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi, S., Karp, J.M. & Karnik, R. Cell sorting by deterministic cell rolling. Lab Chip12, 1427–1430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, S., Levy, O., Coelho, M.B., Cabral, J.M., Karp, J.M., & Karnik, R. A cell rolling cytometer reveals the correlation between mesenchymal stem cell dynamic adhesion and differentiation state. Lab Chip14, 161–166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reschiglian, P., Zattoni, A., Roda, B., Michelini, E. & Roda, A. Field-flow fractionation and biotechnology. Trends Biotechnol.23, 475–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Yan, S., Zhang, J., Alici, G., Du, H., Zhu, Y., & Li, W. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab Chip14, 2993–3003 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Yan, S., Zhang, J., Li, M., Alici, G., Du, H., Sluyter, R., & Li, W. On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Sci. Rep.4, 5060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan, S., Zhang, J., Yuan, Y., Lovrecz, G., Alici, G., Du, H., Zhu, Y., & Li, W. A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis36, 284–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Yan, S., Zhang, J., Chen, H., Yuan, D., Alici, G., Du, H., Zhu, Y. & Li, W. Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering. Biomed. Microdevices18, 54 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Ateya, D.A., Erickson, J.S., Howell, P.B., Jr., Hilliard, L.R., Golden, J.P., & Ligler, F.S. The good, the bad, and the tiny: a review of microflow cytometry. Anal. Bioanal. Chem.391, 1485–1498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vembadi, A., Menachery, A. & Qasaimeh, M.A. Cell cytometry: Review and perspective on biotechnological advances. Front. Bioeng. Biotechnol.7, 147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Asghari, M., Serhatlioglu, M., Ortac, B., Solmaz, M.E. & Elbuken, C. Sheathless microflow cytometry using viscoelastic fluids. Sci. Rep.7, 12342 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bhagat, A. A., Kuntaegowdanahalli, S. S., Kaval, N., Seliskar, C. J. & Papautsky, I. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices12, 187–195 (2010).

    Article  PubMed  Google Scholar 

  103. Martel, J.M. & Toner, M. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng.16, 371–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mielczarek, W.S., Obaje, E.A., Bachmann, T.T. & Kersaudy-Kerhoas, M. Microfluidic blood plasma separation for medical diagnostics: is it worth it? Lab Chip16, 3441–3448 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Kersaudy-Kerhoas, M. & Sollier, E. Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip13, 3323–3346 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1502-54. I thank Byeongyeon Kim for her help with reference preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungyoung Choi.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S. Hydrophoresis — A Microfluidic Principle for Directed Particle Migration in Flow. BioChip J 14, 72–83 (2020). https://doi.org/10.1007/s13206-020-4107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4107-5

Keywords

Navigation