当前位置: X-MOL 学术Commun. Math. Phys. › 论文详情
Classification of Quantum Cellular Automata
Communications in Mathematical Physics ( IF 2.102 ) Pub Date : 2020-04-06 , DOI: 10.1007/s00220-020-03735-y
Michael Freedman, Matthew B. Hastings

There exists an index theory to classify strictly local quantum cellular automata in one dimension (Fidkowski et al. in Interacting invariants for Floquet phases of fermions in two dimensions, 2017. arXiv:1703.07360; Gross et al. in Commun Math Phys 310(2):419–454, 2012; Po et al. in Phys Rev B 96: 245116, 2017). We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reduction, finding a classification by the first homology group of the manifold modulo torsion. Second, in two dimensions, we show that an extension of this index theory (including torsion) fully classifies quantum cellular automata, at least in the absence of fermionic degrees of freedom. This complete classification in one and two dimensions by index theory is not expected to extend to higher dimensions due to recent evidence of a nontrivial automaton in three dimensions (Haah et al. in Nontrivial quantum cellular automata in higher dimensions, 2018. arXiv:1812.01625). Finally, we discuss some group theoretical aspects of the classification of quantum cellular automata and consider these automata on higher dimensional real projective spaces.
更新日期:2020-04-20

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug