当前位置: X-MOL 学术Metabolomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metabolite profiling of whiteleg shrimp Litopenaeus vannamei from super-intensive culture in closed aquaculture systems: a recirculating aquaculture system and a hybrid zero water discharge-recirculating aquaculture system.
Metabolomics ( IF 3.5 ) Pub Date : 2020-04-10 , DOI: 10.1007/s11306-020-01675-1
Gede Suantika 1 , Magdalena Lenny Situmorang 1 , Felicia Irene Saputra 2 , Safira Latifa Erlangga Putri 3 , Sastia Prama Putri 3 , Pingkan Aditiawati 1 , Eiichiro Fukusaki 3
Affiliation  

INTRODUCTION The production of the whiteleg shrimp Litopenaeus vannamei now accounts for approximately 75% of the total shrimp production in Indonesia. The techniques used to produce whiteleg shrimp in Indonesia are still dominated by conventional rearing strategies using open-pond systems, which often contribute to unpredictable culture performance and weak sustainability. Alternative production strategies of closed aquaculture systems, including the recirculating aquaculture system (RAS) and hybrid zero water discharge-recirculating aquaculture system (hybrid system), have been developed and implemented for higher productivity, stability and sustainability of whiteleg shrimp grow-out production in Indonesia. Despite the positive aspects of the application of closed aquaculture systems in shrimp aquaculture, the differences in the characteristics of shrimp grown in closed RAS and hybrid systems compared to open-pond systems remain unclear. OBJECTIVE This study aims to investigate the differences in the metabolite profiles of shrimp grown in intensive closed aquaculture systems, including an RAS and hybrid system, compared to those of shrimp grown in a semi-intensive, open, earthen pond system by means of non-targeted GC-MS metabolite profiling. METHODS Shrimp cultured in the closed systems (RAS and hybrid system) and an open system (pond) were harvested and subjected to GC-MS non-targeted metabolomics analysis. A total of 112 metabolites were annotated from shrimp samples and subjected to principal component analysis (PCA). RESULTS The metabolites annotated from GC-MS mainly included organic compounds, proteinogenic and non-proteinogenic amino acids, sugars, nucleosides and fatty acids. The results of principal component analysis showed several metabolites with high variable importance in projection (VIP) scores, including shikimic acid, β-alanine, uric acid, hypoxanthine, inosine, homocysteine, methionine, phenylalanine, tryptophan and lysine, as the main metabolites differentiating the shrimp grown in the three production systems. CONCLUSION Our findings showed that shrimp cultured in different aquaculture systems exhibited distinct metabolite profiles, and the metabolites showing high VIP scores, including shikimic acid, β-alanine, uric acid, hypoxanthine, inosine, homocysteine, methionine, phenylalanine, tryptophan and lysine, may serve as candidate markers to indicate the differences in shrimp from different production systems.

中文翻译:

密闭水产养殖系统中超集约化养殖南美白对虾凡纳滨对虾的代谢产物谱:循环水产养殖系统和零排放-循环水混合养殖系统。

简介南美白对虾凡纳滨对虾的产量目前约占印度尼西亚对虾总产量的75%。在印度尼西亚,用于生产白腿虾的技术仍被采用开放式池塘养育系统的常规饲养策略所控制,这通常会导致不可预测的养殖性能和脆弱的可持续性。已经开发并实施了封闭式水产养殖系统的替代生产策略,包括循环水产养殖系统(RAS)和混合零水排放-循环水产养殖系统(杂交系统),以提高白虾虾成虾生产的生产率,稳定性和可持续性。印度尼西亚。尽管封闭式水产养殖系统在虾类水产养殖中的应用具有积极意义,在封闭的RAS和杂交系统中与开放池塘系统相比,虾的特性差异尚不清楚。目的本研究旨在调查在集约化封闭式水产养殖系统(包括RAS和杂交系统)中生长的虾与通过非集约化开放式土池系统在非集约化系统中生长的虾相比,代谢产物的差异。靶向GC-MS代谢物分析。方法收集在封闭系统(RAS和杂交系统)和开放系统(池塘)中培养的虾,并进行GC-MS非靶向代谢组学分析。从虾样品中总共注释了112种代谢物,并进行了主成分分析(PCA)。结果GC-MS注释的代谢物主要包括有机化合物,蛋白质和非蛋白质氨基酸,糖,核苷和脂肪酸。主成分分析的结果显示,在预测(VIP)得分中具有高度可变重要性的几种代谢物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分主要代谢物的方法。在三种生产系统中生长的虾。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。核苷和脂肪酸。主成分分析的结果显示,在预测(VIP)得分中具有高度可变重要性的几种代谢物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分主要代谢物的方法。在三种生产系统中生长的虾。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。核苷和脂肪酸。主成分分析的结果显示,在预测(VIP)得分中具有高度可变重要性的几种代谢物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分主要代谢物的方法。在三种生产系统中生长的虾。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。主成分分析的结果显示,在预测(VIP)得分中具有高度可变重要性的几种代谢物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分主要代谢物的方法。在三种生产系统中生长的虾。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。主成分分析结果显示,在预测(VIP)评分中具有高度可变重要性的几种代谢物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分主要代谢物的方法。在三种生产系统中生长的虾。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分三种生产系统中虾类的主要代谢产物。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,是区分三种生产系统中虾类的主要代谢产物。结论我们的研究结果表明,在不同水产养殖系统中养殖的虾表现出独特的代谢产物谱,且具有较高VIP评分的代谢产物,包括sh草酸,β-丙氨酸,尿酸,次黄嘌呤,肌苷,高半胱氨酸,蛋氨酸,苯丙氨酸,色氨酸和赖氨酸,可能用作候选标记,以指示来自不同生产系统的虾的差异。
更新日期:2020-04-22
down
wechat
bug