当前位置: X-MOL 学术J. Mater. Sci. Mater. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering.
Journal of Materials Science: Materials in Medicine ( IF 3.7 ) Pub Date : 2020-04-06 , DOI: 10.1007/s10856-020-06376-8
Muna M Kareem 1 , K Elizabeth Tanner 1, 2
Affiliation  

HA-mineralised composite electrospun scaffolds have been introduced for bone regeneration due to their ability to mimic both morphological features and chemical composition of natural bone ECM. Micro-sized HA is generally avoided in electrospinning due to its reduced bioactivity compared to nano-sized HA due to the lower surface area. However, the high surface area of nanoparticles provides a very high surface energy, leading to agglomeration. Thus, the probability of nanoparticles clumping leading to premature mechanical failure is higher than for microparticles at higher filler content. In this study, two micron-sized hydroxyapatites were investigated for electrospinning with PLA at various contents, namely spray dried HA (HA1) and sintered HA (HA2) particles to examine the effect of polymer concentration, filler type and filler concentration on the morphology of the scaffolds, in addition to the mechanical properties and bioactivity. SEM results showed that fibre diameter and surface roughness of 15 and 20 wt% PLA fibres were significantly affected by incorporation of either HA. The apatite precipitation rates for HA1 and HA2-filled scaffolds immersed in simulated body fluid (SBF) were similar, however, it was affected by the fibre diameter and the presence of HA particles on the fibre surface. Degradation rates of HA2-filled scaffolds in vitro over 14 days was lower than for HA1-filled scaffolds due to enhanced dispersion of HA2 within PLA matrix and reduced cavities in PLA/HA2 interface. Finally, increasing filler surface area led to enhanced thermal stability as it reduced thermal degradation of the polymer.

中文翻译:

优化用于骨组织工程的微羟基磷灰石增强的聚(乳酸)电纺丝支架。

HA矿化复合电纺支架已被引入用于骨骼再生,因为它们具有模仿天然骨骼ECM的形态特征和化学组成的能力。由于其较低的生物活性,与纳米级HA相比,由于其生物活性降低,通常在静电纺丝中避免使用微米级HA。然而,纳米颗粒的高表面积提供了非常高的表面能,导致团聚。因此,纳米颗粒结块导致过早机械失效的可能性高于填料含量较高的微粒。在这项研究中,研究了两种微米大小的羟基磷灰石与PLA在各种含量下的电纺丝,即喷雾干燥的HA(HA1)和烧结的HA(HA2)颗粒,以检查聚合物浓度的影响,填料的类型和填料浓度对支架形态的影响,以及机械性能和生物活性。SEM结果显示,两种HA的掺入均显着影响15和20重量%PLA纤维的纤维直径和表面粗糙度。浸入模拟体液(SBF)的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受到纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。除了机械性能和生物活性。SEM结果显示,两种HA的掺入均显着影响15和20重量%PLA纤维的纤维直径和表面粗糙度。浸入模拟体液(SBF)中的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。除了机械性能和生物活性。SEM结果显示,两种HA的掺入均显着影响15和20重量%PLA纤维的纤维直径和表面粗糙度。浸入模拟体液(SBF)的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受到纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加填料表面积可提高热稳定性,因为它减少了聚合物的热降解。SEM结果表明,两种HA的掺入均显着影响15和20重量%PLA纤维的纤维直径和表面粗糙度。浸入模拟体液(SBF)中的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。SEM结果显示,两种HA的掺入均显着影响15和20重量%PLA纤维的纤维直径和表面粗糙度。浸入模拟体液(SBF)中的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。浸入模拟体液(SBF)的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受到纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。浸入模拟体液(SBF)的HA1和HA2填充支架的磷灰石沉淀速率相似,但是,它受到纤维直径和纤维表面上HA颗粒的影响。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。由于HA2在PLA基质中的分散性增强和PLA / HA2界面的空洞减少,体外填充HA2的支架在14天之内的降解速率低于填充HA1的支架。最后,增加的填料表面积导致增强的热稳定性,因为它减少了聚合物的热降解。
更新日期:2020-04-21
down
wechat
bug