Skip to main content
Log in

Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering

  • Special Issue: CESB 2019
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

HA-mineralised composite electrospun scaffolds have been introduced for bone regeneration due to their ability to mimic both morphological features and chemical composition of natural bone ECM. Micro-sized HA is generally avoided in electrospinning due to its reduced bioactivity compared to nano-sized HA due to the lower surface area. However, the high surface area of nanoparticles provides a very high surface energy, leading to agglomeration. Thus, the probability of nanoparticles clumping leading to premature mechanical failure is higher than for microparticles at higher filler content. In this study, two micron-sized hydroxyapatites were investigated for electrospinning with PLA at various contents, namely spray dried HA (HA1) and sintered HA (HA2) particles to examine the effect of polymer concentration, filler type and filler concentration on the morphology of the scaffolds, in addition to the mechanical properties and bioactivity. SEM results showed that fibre diameter and surface roughness of 15 and 20 wt% PLA fibres were significantly affected by incorporation of either HA. The apatite precipitation rates for HA1 and HA2-filled scaffolds immersed in simulated body fluid (SBF) were similar, however, it was affected by the fibre diameter and the presence of HA particles on the fibre surface. Degradation rates of HA2-filled scaffolds in vitro over 14 days was lower than for HA1-filled scaffolds due to enhanced dispersion of HA2 within PLA matrix and reduced cavities in PLA/HA2 interface. Finally, increasing filler surface area led to enhanced thermal stability as it reduced thermal degradation of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Drew C, Wang X, Samuelson LA, Kumar J. The effect of viscosity and filler on electrospun fiber morphology. J Macromol Sci Part A. 2003;40:1415–22.

    Google Scholar 

  2. Tyagi P, Catledge SA, Stanishevsky A, Thomas V, Vohra YK. Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite. J Nanosci Nanotechnol. 2009;9:4839–45.

    CAS  Google Scholar 

  3. Kouhi M, Prabhakaran MP, Shamanian M, Fathi M, Morshed M, Ramakrishna S. Electrospun PHBV nanofibers containing HA and bredigite nanoparticles: Fabrication, characterization and evaluation of mechanical properties and bioactivity. Compos Sci Technol. 2015;121:115–22.

    CAS  Google Scholar 

  4. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011;22:1873–84.

    CAS  Google Scholar 

  5. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–22.

    CAS  Google Scholar 

  6. Peng F, Yu X, Wei M. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater. 2011;7:2585–92.

    CAS  Google Scholar 

  7. Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater. 2014;39:95–110.

    CAS  Google Scholar 

  8. Yang S, Madbouly SA, Schrader JA, Srinivasan G, Grewell D, McCabe KG, et al. Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chem. 2015;17:380–93.

    CAS  Google Scholar 

  9. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527–36.

    CAS  Google Scholar 

  10. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26:7606–15.

    CAS  Google Scholar 

  11. Guarino V, Causa F, Taddei P, di Foggia M, Ciapetti G, Martini D, et al. Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials. 2008;29:3662–70.

    CAS  Google Scholar 

  12. Whelan T. Polymer technology dictionary. London: Chapman & Hall; 1994.

    Google Scholar 

  13. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res. 1990;24:721–34.

    CAS  Google Scholar 

  14. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res. 2003;65:188–95.

    Google Scholar 

  15. Choi EJ, Son B, Hwang TS, Hwang EH. Increase of degradation and water uptake rate using electrospun star-shaped poly(d,l-lactide) nanofiber. J Ind Eng Chem. 2011;17:691–5.

    CAS  Google Scholar 

  16. Augustine R, Thomas S, Kalarikkal N. In vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int. Int J Inst Mater Malaysia. 2015;2:211–20.

    Google Scholar 

  17. Huang J, Xiong J, Liu J, Zhu W, Wang D. Investigation of the in vitro degradation of a novel polylactide/nanohydroxyapatite composite for artificial bone. J Nanomater. 2013;2013:515741.

  18. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    CAS  Google Scholar 

  19. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19:485–502.

    CAS  Google Scholar 

  20. Feller L, Jadwat Y, Khammissa RAG, Meyerov R, Schechter I, Lemmer J. Cellular responses evoked by different surface characteristics of intraosseous titanium implants. Biomed Res Int. 2015;2015:1–8.

    Google Scholar 

  21. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141–50.

    CAS  Google Scholar 

  22. Ma HB, Su WX, Tai ZX, Sun DF, Yan XB, Liu B, Xue QJ. Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chinese Sci Bull. 2012;57:3051–8.

    CAS  Google Scholar 

  23. Deng X-L, Sui G, Zhao M-L, Chen G-Q, Yang X-P. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polym Ed. 2007;18:117–30.

    CAS  Google Scholar 

  24. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured fibers via electrospinning. Adv Mater. 2001;13:70–2.

    CAS  Google Scholar 

  25. Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science. 2001;292:79–83.

    CAS  Google Scholar 

  26. Kim CH, Jung YH, Kim HY, Lee DR, Dharmaraj N, Choi KE. Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res. 2006;14:59–65.

    CAS  Google Scholar 

  27. Zander NE. Hierarchically structured electrospun fibers. Polymers. 2013;5:19–44.

    Google Scholar 

  28. Zhang H, Fu Q-W, Sun T-W, Chen F, Qi C, Wu J, et al. Amorphous calcium phosphate, hydroxyapatite and poly(D,L-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf B Biointerfaces. 2015;136:27–36.

    CAS  Google Scholar 

  29. Fu Q-W, Zi Y-P, Xu W, Zhou R, Cai Z-Y, Zheng W-J, et al. Electrospinning of calcium phosphate-poly(D,L-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization. Int J Nanomed. 2016;11:5087–97.

    CAS  Google Scholar 

  30. Wang M, Cai Y, Zhao B, Zhu P. Time-resolved study of nanomorphology and nanomechanic change of early-stage mineralized electrospun poly(lactic acid) fiber by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Nanomaterials. 2017;7:1–11.

    Google Scholar 

  31. Rajzer I. Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J Mater Sci. 2014;49:5799–807.

    CAS  Google Scholar 

  32. Silva CSR, Luz GM, Mano JF, Gómez Ribelles JL, Gómez-Tejedor J. Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi’s methodology. J Macromol Sci Part B Phys. 2014;53:781–99.

    CAS  Google Scholar 

  33. Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med. 2014;25:1239–47.

    CAS  Google Scholar 

  34. Hassan MI, Sultana N, Hamdan S. Bioactivity assessment of poly (Ɛ-caprolactone)/ hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater. 2014;2014:573238.

  35. Porter AE, Buckland T, Hing K, Best SM, Bonfield W. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. J Biomed Mater Res Part A. 2006;78:25–33.

    Google Scholar 

  36. Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J Biomed Mater Res Part B Appl Biomater. 2013;101B:902–10.

    CAS  Google Scholar 

  37. Arsad MSM, Lee PM, Hung LK. Morphology and particle size analysis of hydroxyapatite micro- and nano-particles. CSSR 2010–2010 Int Conf Sci Soc Res. 2010;1030–4.

  38. He C, Jin X, Ma PX. Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(l-lactic acid) matrix using electrodeposition or simulated body fluid incubation. Acta Biomater. 2014;10:419–27.

    CAS  Google Scholar 

  39. Kareem MM, Hodgkinson T, Sanchez MS, Dalby MJ, Tanner KE. Hybrid core–shell scaffolds for bone tissue engineering. Biomed Mater. 2019;14:025008.

    CAS  Google Scholar 

  40. You Y, Min BM, Lee SJ, Lee TS, Park WH. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci. 2005;95:193–200.

    CAS  Google Scholar 

  41. Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng Part B Rev. 2009;15:333–51.

    CAS  Google Scholar 

  42. Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules. 2006;7:1623–9.

    CAS  Google Scholar 

  43. Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, et al. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A. 2007;82A:445–54.

    CAS  Google Scholar 

  44. Huang J, Xiong J, Liu J, Zhu W, Chen J, Duan L, et al. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold. Biomed Mater Eng. 2015;26:S197–205.

    Google Scholar 

  45. Tham WL, Chow WS, Ishak ZAM. Simulated body fluid and water absorption effects on poly(methyl methacrylate)/hydroxyapatite denture base composites. Express Polym Lett. 2010;4:517–28.

    CAS  Google Scholar 

  46. Rong Z, Zeng W, Kuang Y, Zhang J, Liu X, Lu Y, et al. Enhanced bioactivity of osteoblast-like cells on poly(lactic acid)/poly(methyl methacrylate)/nano-hydroxyapatite scaffolds for bone tissue engineering. Fibers Polym. 2015;16:245–53.

    CAS  Google Scholar 

  47. Joseph R, McGregor WJ, Martyn MT, Tanner KE, Coates PD. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomaterials. 2002;23:4295–302.

    CAS  Google Scholar 

  48. Suwanprateeb J, Tanner KE, Turner S, Bonfield W. Influence of Ringer’s solution on creep resistance of hydroxyapatite reinforced polyethylene composites. J Mater Sci Mater Med. 1997;8:469–72.

    CAS  Google Scholar 

  49. Zhang Y, Tanner KE. Impact behavior of hydroxyapatite reinforced polyethylene composites. J Mater Sci Mater Med. 2003;14:63–8.

    Google Scholar 

  50. Krynauw H, Bruchmüller L, Bezuidenhout D, Zilla P, Franz T. Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration. J Biomed Mater Res Part B Appl Biomater. 2011;99 B:359–68.

    Google Scholar 

  51. Liu X, Wang T, Chow LC, Yang M, Mitchell JW. Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid). Int J Polym Sci. 2014;2014:1–8.

    CAS  Google Scholar 

  52. Liu X, Khor S, Petinakis E, Yu L, Simon G, Dean K, et al. Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochim Acta. 2010;509:147–51.

    CAS  Google Scholar 

  53. Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N. Physical properties and cytotoxicity of surface-modified bovine bone-based hydroxyapatite/poly(lactic acid) composites. J Compos Mater. 2011;45:1259–69.

    CAS  Google Scholar 

  54. Ignjatovic N, Suljovrujic E, Budinski-Simendic J, Krakovsky I, Uskokovic D. Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics. J Biomed Mater Res Part B Appl Biomater. 2004;71:284–94.

    Google Scholar 

  55. Sooksaen P, Pengsuwan N, Karawatthanaworrakul S, Pianpraditkul S. Formation of porous apatite layer during in vitro study of hydroxyapatite-AW based glass composites. Adv Condens Matter Phys. 2015;2015:1–9.

    Google Scholar 

  56. Chlopek J, Morawska-Chochol A, Paluszkiewicz C, Jaworska J, Kasperczyk J. FTIR and NMR study of poly(lactide-co-glycolide) and hydroxyapatite implant degradation under in vivo conditions. Polym Degrad Stab. 2009;94:1479–85.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by an Iraqi Government Scholarship Grant (number S1648). The authors would also like to thank Dr Margaret Smith, Mrs Margaret Mullin and Mr John Davidson for their help with FTIR, SEM and mechanical testing, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Elizabeth Tanner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kareem, M.M., Tanner, K.E. Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering. J Mater Sci: Mater Med 31, 38 (2020). https://doi.org/10.1007/s10856-020-06376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06376-8

Navigation