当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioactivity measurement of commercially pure titanium processed by micro-electric discharge drilling
The International Journal of Advanced Manufacturing Technology ( IF 3.4 ) Pub Date : 2020-03-27 , DOI: 10.1007/s00170-020-05224-x
Neeraj Ahuja , Neeraj Sharma , Hussien Hegab , Rajesh Khanna , Aqib Mashood Khan

Abstract

The surface modification is a pivotal step in the field of the biomedical implant in order to improve its biomedical characteristics. A number of methods can be adopted to improve surface characteristics like coating, evaporation, sputtering, and ion implantation. The surface of any material can also be improved by machining. In the present work, an electric discharge drilling (EDD) was used for the development of quality holes on any conductive material regardless of its hardness. In the present research, commercially pure titanium (CPTi) was drilled for the development of microhole using the EDD. The effect of microholes on the apatite formation and weight gain was determined. The apatite formation was measured in the presence of simulated body fluid (SBF) after 7, 14, and 21 days of immersion. The temperature and pH during the apatite formation were 37 °C and 7.4, respectively. It was found that after the development of microholes, the quantity of apatite formation increases. On the contrary side on the normal CPTi material (without drilling), an insignificant apatite formation was observed. However, after drilling, the elements of calcium and phosphate were observed ever after 4 days of immersion in SBF. The surface area of the apatite formation increases by 24% after the development of microholes. Scanning electron microscopy (SEM) revealed the microstructure of the drilled surface before and after the immersion of CPTi in SBF. In addition, it was observed that with the increase in the number of holes and immersion period, the apatite formation increases.



中文翻译:

微放电钻孔加工商业纯钛的生物活性测定

摘要

为了改善其生物医学特性,表面改性是生物医学植入物领域中的关键步骤。可以采用许多方法来改善表面特性,例如涂覆,蒸发,溅射和离子注入。任何材料的表面也可以通过机械加工得到改善。在目前的工作中,无论其硬度如何,都使用放电钻孔(EDD)在任何导电材料上形成优质孔。在本研究中,使用EDD钻了商业纯钛(CPTi)以开发微孔。确定了微孔对磷灰石形成和重量增加的影响。在浸入7、14和21天后,在存在模拟体液(SBF)的情况下测量磷灰石的形成。磷灰石形成过程中的温度和pH分别为37°C和7.4。发现在形成微孔之后,磷灰石形成的数量增加。相反,在常规CPTi材料上(未钻孔),观察到微不足道的磷灰石形成。然而,在钻探之后,在SBF中浸泡4天后就观察到了钙和磷酸盐的元素。形成微孔后,磷灰石形成的表面积增加了24%。扫描电子显微镜(SEM)揭示了CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。发现在形成微孔之后,磷灰石形成的数量增加。相反,在常规CPTi材料上(未钻孔),观察到微不足道的磷灰石形成。然而,在钻探之后,在SBF中浸泡4天后就观察到了钙和磷酸盐的元素。形成微孔后,磷灰石形成的表面积增加了24%。扫描电子显微镜(SEM)揭示了将CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。发现在形成微孔之后,磷灰石形成的数量增加。相反,在常规CPTi材料上(未钻孔),观察到微不足道的磷灰石形成。然而,在钻探之后,在SBF中浸泡4天后就观察到了钙和磷酸盐的元素。形成微孔后,磷灰石形成的表面积增加了24%。扫描电子显微镜(SEM)揭示了将CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。观察到微不足道的磷灰石形成。然而,在钻探之后,在SBF中浸泡4天后就观察到了钙和磷酸盐的元素。形成微孔后,磷灰石形成的表面积增加了24%。扫描电子显微镜(SEM)揭示了将CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。观察到微不足道的磷灰石形成。然而,在钻孔之后,将钙和磷酸盐的元素浸入SBF中4天后就可以观察到。形成微孔后,磷灰石形成的表面积增加了24%。扫描电子显微镜(SEM)揭示了将CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。扫描电子显微镜(SEM)揭示了将CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。扫描电子显微镜(SEM)揭示了将CPTi浸入SBF之前和之后的钻孔表面的微观结构。另外,观察到随着孔数和浸入时间的增加,磷灰石的形成增加。

更新日期:2020-03-27
down
wechat
bug