当前位置: X-MOL 学术Appl. Magn. Reson. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Realization of an Extremely Small Shift of MR Frequency in a Wide Range of Operating Temperatures in Rubidium Atomic Clock on 87Rb Cell with Two Anti-Relaxation Components (Coating + Inert Gas, 40Ar)
Applied Magnetic Resonance ( IF 1.1 ) Pub Date : 2020-02-01 , DOI: 10.1007/s00723-019-01186-w
Evgeny N. Pestov , Alla N. Besedina , Dmitry E. Pestov , Vladimir V. Semenov

One of the most important problems in achieving daily frequency instability $$\sigma _{y} < 5 \cdot 10^{{ - 14}}$$ σ y < 5 · 10 - 14 of on-board rubidium atomic clocks on absorption cell with working 87 Rb atoms and mixture of buffer gases is realization of the TFS parameter — of temperature frequency shift $$\delta \nu \left( T \right)$$ δ ν T at the level of $$\ \le 3 \cdot 10^{{ - 12}} /\, {^\circ } {\text{C}}.$$ ≤ 3 · 10 - 12 / ∘ C . The temperature dependence of the microwave “0–0” transition frequency $$\nu \left( T \right)$$ ν T has an extremum with a small flat top ∆ T ~ 0.5 °C to which the 87 Rb-cell operating temperature is tuned. Significant difficulties arise in maintaining the high stability of this small ∆ T zone under conditions of increased 87 Rb cell operating temperature, $$T>70\, ^\circ{\rm C}$$ T > 70 ∘ C , with an accuracy of < 0.005 °C for a day or more. To solve this problem, authors proposed a new type of 87 Rb absorption cell with two dissimilar anti-relaxation (AR) components (wall coating + buffer gas, 40 Ar) and created a special physical setup for optical spin pumping of 87 Rb atoms at the microwave magnetic resonance frequency, $$\nu \sim \;6.834\,\;{\text{GHz}}$$ ν ∼ 6.834 GHz , with a resolution $$0.01 \,\mathrm{H}\mathrm{z}$$ 0.01 H z . Investigations have shown TFS $$\sim 1.4 \cdot 10^{{ - 12}} /\;{{^\circ }} {\text{C}}$$ ∼ 1.4 · 10 - 12 / ∘ C in significantly expanded (by an order of magnitude) zone, $$\Delta T$$ Δ T ≃ $$5 \left(\pm 1\right)\,\, ^\circ{\rm C} ,$$ 5 ± 1 ∘ C , in the operating temperature range of $$\left( {35 \div 41} \right)\;^{ \circ } {\text{C}},$$ 35 ÷ 41 ∘ C , which is ensured inside a satellite, for example. The simultaneous effect of AR-components causes the maximum mutual compensation of temperature frequency shifts in the extended ∆ T zone. The experimental data show the possibility realizing daily frequency instability $$\sigma _{y} \sim 1 \cdot 10^{{ - 14}}$$ σ y ∼ 1 · 10 - 14 of the on-board atomic clock on 87 Rb cell with two dissimilar AR-components (wall coating + inert gas, 40 Ar).

中文翻译:

在具有两种抗松弛成分(涂层 + 惰性气体,40Ar)的 87Rb 电池上实现铷原子钟在很宽的工作温度范围内实现极小的 MR 频率偏移

实现每日频率不稳定性的最重要问题之一 $$\sigma _{y} < 5 \cdot 10^{{ - 14}}$$ σ y < 5 · 10 - 14 机载铷原子钟的吸收具有工作 87 个 Rb 原子和缓冲气体混合物的电池实现了 TFS 参数——温度频移 $$\delta \nu \left( T \right)$$ δ ν T 在 $$\ \ le 3 的水平\cdot 10^{{ - 12}} /\, {^\circ } {\text{C}}.$$ ≤ 3 · 10 - 12 / ∘ C 。微波“0-0”跃迁频率的温度依赖性 $$\nu \left( T \right)$$ ν T 有一个极值,带有一个小平顶 ∆ T ~ 0.5 °C,87 Rb 电池在该极值下工作温度已调好。在 87 Rb 电池工作温度升高的条件下,维持这个小 ∆ T 区的高稳定性出现了重大困难,$$T>70\, ^\circ{\rm C}$$ T > 70 ∘ C ,一天或更长时间的精度 < 0.005 °C。为了解决这个问题,作者提出了一种新型的 87 Rb 吸收池,它具有两种不同的反弛豫 (AR) 组件(壁涂层 + 缓冲气体,40 Ar),并创建了一种特殊的物理装置,用于在 87 Rb 原子的光学自旋泵浦微波磁共振频率,$$\nu \sim \;6.834\,\;{\text{GHz}}$$ ν ∼ 6.834 GHz ,分辨率 $$0.01 \,\mathrm{H}\mathrm{z} $$ 0.01 赫兹。调查显示 TFS $$\sim 1.4 \cdot 10^{{ - 12}} /\;{{^\circ }} {\text{C}}$$ ∼ 1.4 · 10 - 12 / ∘ C 在显着扩展(按数量级)区域,$$\Delta T$$ Δ T ≃ $$5 \left(\pm 1\right)\,\, ^\circ{\rm C} ,$$ 5 ± 1 ∘ C , 在 $$\left( {35 \div 41} \right)\;^{ \circ } {\text{C}} 的工作温度范围内,$$ 35 ÷ 41 ∘ C ,这在卫星内部得到保证, 例如。AR 分量的同时效应导致扩展 ∆ T 区域中温度频率偏移的最大相互补偿。实验数据表明,87 上的星载原子钟有可能实现每日频率不稳定性 $$\sigma _{y} \sim 1 \cdot 10^{{ - 14}}$$ σ y ∼ 1 · 10 - 14具有两种不同 AR 成分的 Rb 电池(壁涂层 + 惰性气体,40 Ar)。
更新日期:2020-02-01
down
wechat
bug