Skip to main content

Advertisement

Log in

On Realization of an Extremely Small Shift of MR Frequency in a Wide Range of Operating Temperatures in Rubidium Atomic Clock on 87Rb Cell with Two Anti-Relaxation Components (Coating + Inert Gas, 40Ar)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

One of the most important problems in achieving daily frequency instability \(\sigma _{y} < 5 \cdot 10^{{ - 14}}\) of on-board rubidium atomic clocks on absorption cell with working 87Rb atoms and mixture of buffer gases is realization of the TFS parameter — of temperature frequency shift \(\delta \nu \left( T \right)\) at the level of \(\ \le 3 \cdot 10^{{ - 12}} /\, {^\circ } {\text{C}}.\) The temperature dependence of the microwave “0–0” transition frequency \(\nu \left( T \right)\) has an extremum with a small flat top ∆T ~ 0.5 °C to which the 87Rb-cell operating temperature is tuned. Significant difficulties arise in maintaining the high stability of this small ∆T zone under conditions of increased 87Rb cell operating temperature, \(T>70\, ^\circ{\rm C}\), with an accuracy of < 0.005 °C for a day or more. To solve this problem, authors proposed a new type of 87Rb absorption cell with two dissimilar anti-relaxation (AR) components (wall coating + buffer gas, 40Ar) and created a special physical setup for optical spin pumping of 87Rb atoms at the microwave magnetic resonance frequency, \(\nu \sim \;6.834\,\;{\text{GHz}}\), with a resolution \(0.01 \,\mathrm{H}\mathrm{z}\). Investigations have shown TFS \(\sim 1.4 \cdot 10^{{ - 12}} /\;{{^\circ }} {\text{C}}\) in significantly expanded (by an order of magnitude) zone, \(\Delta T\) ≃ \(5 \left(\pm 1\right)\,\, ^\circ{\rm C} ,\) in the operating temperature range of \(\left( {35 \div 41} \right)\;^{ \circ } {\text{C}},\) which is ensured inside a satellite, for example. The simultaneous effect of AR-components causes the maximum mutual compensation of temperature frequency shifts in the extended ∆T zone. The experimental data show the possibility realizing daily frequency instability \(\sigma _{y} \sim 1 \cdot 10^{{ - 14}}\) of the on-board atomic clock on 87Rb cell with two dissimilar AR-components (wall coating + inert gas, 40Ar).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Riehle, Frequency Standards. Basics and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004), ISBN 3-527-40230-6

  2. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer-Verlag, 2014). https://doi.org/10.1007/978-3-319-05299-1

  3. T. McClelland, T. Pascaru, I. Shtaermann, I. Varuolo, C. Szekeley, C. Zacharski, J. Bravo, Y. White, D. Wilson, in Proceedings of the 43nd Annual Precise Time (PTTI) Systems and Applications Meeting (Long Beach, California, USA, 14–17 November 2011), pp. 325–340

  4. A. Risley, S. Jarvis, J. Vanier, J. Appl. Phys. 51(9), 4571–4576 (1980)

    Article  ADS  Google Scholar 

  5. Sh.Sh. Dolginov, A.N. Kozlov, M.M. Chinchevoi, Rev. Phys. Appl. 5(1), 178–182 (1970)

    Article  Google Scholar 

  6. T. Bandi, C. Affolderbach, S. Camillo, C. Stefanucci, F. Merli, A.K. Skrivervik, G. Mileti, IEEE Trans. UFFC 61(11), 1769–1778 (2014)

    Article  Google Scholar 

  7. A. Besedina, O. Berezovskaya, V. Zholnerov, in Proceedings of the 21th EFTF and IEEE-FCS (Geneva, Switzerland, 29 May - 1 June 2007), pp. 607–612

  8. D. Budker, L. Hollberg, D.F. Kimball, J. Kitching, S. Pustelny, V.V. Yashchuk, Phys. Rev. A 71(1), 012903-1–012903-9 (2005)

    Article  ADS  Google Scholar 

  9. C. Rahman, H.G. Robinson, IEEE J. Quant. Electronics QE-23(4), 452–454 (1987)

    Article  ADS  Google Scholar 

  10. S. Knappe, H.G. Robinson, New J. Phys. 12(6), 1–9 (2010)

    Article  Google Scholar 

  11. E.B. Alexandrov, M.V. Balabas, D. Budker, D. English, D.F. Kimball, C.-H. Li, V.V. Yashchuk, Phys. Rev. A 66(4), 042903-1–042903-12 (2002)

    Article  ADS  Google Scholar 

  12. M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Phys. Rev. Lett. 105(8), R070801 (2010)

    ADS  Google Scholar 

  13. E.N. Pestov, in Proceedings of Joint Conference of the IFCS-EFTF (San Francisco, California, USA, 1-5 May 2011), pp. 623–627

  14. E.N. Pestov, V.P. Azarov, A.N. Besedina, V.S. Zholnerov, in Proceedings of IAA RAS ( St.-Petersburg, Russia, 15-19 April 2013) issue 27, pp. 507–511

  15. E.N. Pestov, V.P. Azarov, D.E. Pestov, Patent of Russia No 151192 (2015) /priority from 12.02.2014

  16. E.N. Pestov, A.N. Besedina, V.V. Semenov, in Proceedings of the 14 International School-Conference“Magnetic Resonance and Its Applications” (“Spinus-2017”, St.-Petersburg, Russia, 23-29 April 2017), pp.163–164

  17. Y.G. Guzhva, V.S. Zholnerov, Sov. Zh. Voprosy radioelektroniki (Scien.- tech. collection. General technical series, GT). Issue 20, pp. 125−130 (1968)

  18. J. Vanier, R. Kunski, N. Cyr, J.Y. Savard, M. Têtu, J. Appl. Phys. 53(8), 5387–5391 (1982)

  19. C. Affolderbach, R. Matthey, F. Gruet, T. Bandi, G. Mileti, in Proceedings of the 24th EFTF (Noordwijk, Netherlands, 13–16 April 2010), pp. 281−288

  20. M.T. Graf, D.F. Kimball, S.M. Rochester, K. Kerner, C. Wong, D. Budker, E.B. Alexandrov, M.V. Balabas, V.V. Yashchuk, Phys. Rev. A 72(2), 023401-1–023401-13 (2002)

    ADS  Google Scholar 

  21. M.V. Balabas, O.Y. Tretiyak, J. Tech. Phys. (in Russian) 82(9), 75–82 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny N. Pestov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestov, E.N., Besedina, A.N., Pestov, D.E. et al. On Realization of an Extremely Small Shift of MR Frequency in a Wide Range of Operating Temperatures in Rubidium Atomic Clock on 87Rb Cell with Two Anti-Relaxation Components (Coating + Inert Gas, 40Ar). Appl Magn Reson 51, 195–204 (2020). https://doi.org/10.1007/s00723-019-01186-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01186-w

Navigation