当前位置: X-MOL 学术Radiat. Environ. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster.
Radiation and Environmental Biophysics ( IF 1.5 ) Pub Date : 2020-02-19 , DOI: 10.1007/s00411-020-00833-2
Elena Yushkova 1
Affiliation  

The article is devoted to the study of the role of intracellular mechanisms in the formation of radiation-induced genetic instability and its transgenerational effect in cells of different tissues of the descendants of Drosophila melanogaster mutant strains whose parents were exposed to chronic radiation (0.42 and 3.5 mGy/h). The level of DNA damage (alkali-labile sites (ALS), single-strand (SSB) and double-strand (DSB) breaks) in cells of somatic (nerve ganglia, imaginal discs) and generative (testis) tissues from directly irradiated animals and their unirradiated offspring was evaluated. Confident transgenerational instability (on the level of ALSs and SSBs), observed only in somatic tissues and only at the higher dose rate, is characteristic for mus209 mutant strains defective in excision repair and, less often, for mus205 and mus210 mutant strains. The greatest manifestation of radiation-induced genetic instability was found in evaluating the DSBs. Dysfunction of the genes mus205, mus304, mei-9 and mei-41, which are responsible for postreplicative repair, excision repair, recombination and control of the cell cycle, affects transgenerational changes in the somatic tissues of the offspring of parents irradiated in both low and high dose rates. In germ cells, the key role in maintaining genetic stability under chronic irradiation is played by the non-recombination postreplication repair mus101 gene. We revealed the tissue specificity of the radiation-induced effects, transgenerational transmission and accumulation of DNA damage to descendants of chronically irradiated animals.

中文翻译:

辐射诱导的果蝇的慢性辐射个体后代的基因组不稳定及其转基因效应的遗传机制。

本文致力于研究细胞内机制在辐射诱导的遗传不稳定性形成中的作用及其在果蝇果蝇突变体菌株的后代的不同组织的细胞中的传代效应(其父母暴露于慢性辐射下)(0.42和3.5 mGy / h)。直接辐射动物的体细胞(神经节,虚影盘)和生殖(睾丸)组织的细胞中DNA损伤(碱不稳定位点(ALS),单链(SSB)和双链(DSB)断裂)的水平并评估了他们未经辐照的后代。仅在体细胞组织中且仅在较高剂量率下才能观察到的有信心的跨代不稳定性(在ALS和SSB的水平上)是mus209突变菌株在切除修复中有缺陷的特征,在较少情况下,用于mus205和mus210突变株。在评估DSB时发现了辐射引起的遗传不稳定性的最大表现。mus205,mus304,mei-9和mei-41基因的功能异常,负责复制后的修复,切除修复,重组和细胞周期的控制,这影响了低剂量照射的父母后代体细胞组织的转世变化。和高剂量率。在生殖细胞中,非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导的效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。在评估DSB时发现了辐射引起的遗传不稳定性的最大表现。mus205,mus304,mei-9和mei-41基因的功能异常,负责复制后的修复,切除修复,重组和细胞周期的控制,这影响了低剂量照射的父母后代体细胞组织的转世变化。和高剂量率。在生殖细胞中,非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。在评估DSB时发现了辐射引起的遗传不稳定性的最大表现。mus205,mus304,mei-9和mei-41基因的功能异常,负责复制后的修复,切除修复,重组和细胞周期的控制,这影响了低剂量照射的父母后代体细胞组织的转世变化。和高剂量率。在生殖细胞中,非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。它们负责复制后的修复,切除修复,细胞周期的重组和控制,影响以低剂量和高剂量照射的父母后代体细胞组织的转世世代变化。在生殖细胞中,非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导的效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。它们负责复制后的修复,切除修复,细胞周期的重组和控制,影响以低剂量和高剂量照射的父母后代体细胞组织的转世世代变化。在生殖细胞中,非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导的效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。非重组复制后修复mus101基因在维持慢性照射下的遗传稳定性中起着关键作用。我们揭示了辐射诱导的效应,跨代传播和DNA损伤对慢性辐照动物后代的组织特异性。
更新日期:2020-04-23
down
wechat
bug