当前位置: X-MOL 学术Biomed. Microdevices › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip.
Biomedical Microdevices ( IF 3.0 ) Pub Date : 2019-12-26 , DOI: 10.1007/s10544-019-0460-3
Mieradilijiang Abudupataer 1, 2 , Nan Chen 1, 2 , Shiqiang Yan 3 , Fazle Alam 3 , Yu Shi 1, 2 , Li Wang 3 , Hao Lai 1, 2 , Jun Li 1, 2 , Kai Zhu 1, 2 , Chunsheng Wang 1, 2
Affiliation  

The organ-on-a-chip model mimics the structural and functional features of human tissues or organs and has great importance in translational research. For vessel-on-a-chip model, conventional fabrication techniques are unable to efficiently imitate the intimal-medial unit of the vessel wall. Bioprinting technology, which can precisely control the organization of cells, biomolecules, and the extracellular matrix, has the potential to fabricate three-dimensional (3D) tissue constructs with spatial heterogeneity. In this study, we applied the gelatin-methacryloyl-based bioprinting technology to print 3D construct containing endothelial cells (ECs) and smooth muscle cells (SMCs) on a microfluidic chip. Compared with traditional culture system, EC-SMC coculturing chip model upregulated αSMA and SM22 protein expression of the SMC to a greater degree and maintains the contractile phenotype of the SMC, which mimics the natural vascular microenvironment. This strategy enabled us to establish an in vitro vascular model for studies of the physiologic and pathologic process in vascular wall.

中文翻译:

对3D血管构造进行生物打印以工程化芯片上的血管。

芯片上器官模型模仿了人体组织或器官的结构和功能特征,在翻译研究中具有重要意义。对于芯片上血管模型,常规的制造技术无法有效地模仿血管壁的内膜-内膜单元。生物打印技术可以精确控制细胞,生物分子和细胞外基质的组织,具有制造具有空间异质性的三维(3D)组织构造的潜力。在这项研究中,我们应用了基于明胶-甲基丙烯酰基的生物打印技术,以在微流控芯片上打印包含内皮细胞(EC)和平滑肌细胞(SMC)的3D构建体。与传统文化体系相比,EC-SMC共培养芯片模型在更大程度上上调了SMC的αSMA和SM22蛋白表达,并维持了SMC的收缩表型,从而模仿了自然的血管微环境。这种策略使我们能够建立一个体外血管模型研究血管壁的生理和病理过程。
更新日期:2019-12-26
down
wechat
bug