Skip to main content
Log in

Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The organ-on-a-chip model mimics the structural and functional features of human tissues or organs and has great importance in translational research. For vessel-on-a-chip model, conventional fabrication techniques are unable to efficiently imitate the intimal-medial unit of the vessel wall. Bioprinting technology, which can precisely control the organization of cells, biomolecules, and the extracellular matrix, has the potential to fabricate three-dimensional (3D) tissue constructs with spatial heterogeneity. In this study, we applied the gelatin-methacryloyl-based bioprinting technology to print 3D construct containing endothelial cells (ECs) and smooth muscle cells (SMCs) on a microfluidic chip. Compared with traditional culture system, EC-SMC coculturing chip model upregulated αSMA and SM22 protein expression of the SMC to a greater degree and maintains the contractile phenotype of the SMC, which mimics the natural vascular microenvironment. This strategy enabled us to establish an in vitro vascular model for studies of the physiologic and pathologic process in vascular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • S. Ahadian, R. Civitarese, D. Bannerman, M.H. Mohammadi, R. Lu, E. Wang, L. Davenport-Huyer, B. Lai, B. Zhang, Y. Zhao, et al., Organ-on-a-Chip platforms: A convergence of advanced materials, cells, and microscale technologies. Adv. Healthc. Mater. 7, 1 (2018)

    Article  Google Scholar 

  • X. Ai, W. Lu, K. Zeng, C. Li, Y. Jiang, P. Tu, Microfluidic Coculture device for monitoring of inflammation-induced myocardial injury dynamics. Anal. Chem. 90, 4485 (2018)

    Article  Google Scholar 

  • D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261 (2002)

    Article  Google Scholar 

  • A. Bein, W. Shin, S. Jalili-Firoozinezhad, M.H. Park, A. Sontheimer-Phelps, A. Tovaglieri, A. Chalkiadaki, H.J. Kim, D.E. Ingber, Microfluidic organ-on-a-Chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5, 659 (2018)

    Article  Google Scholar 

  • N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720 (2016)

    Article  Google Scholar 

  • R. Bracci, E. Maccaroni, S. Cascinu, Transient sunitinib resistance in gastrointestinal stromal tumors. N. Engl. J. Med. 368, 2042 (2013)

    Article  Google Scholar 

  • J.M. Chan, K.H. Wong, A.M. Richards, C.L. Drum, Microengineering in cardiovascular research: New developments and translational applications. Cardiovasc. Res. 106, 9 (2015)

    Article  Google Scholar 

  • N. Chen, K. Zhu, Y.S. Zhang, S. Yan, T. Pan, M. Abudupataer, G. Yu, M.F. Alam, L. Wang, X. Sun, et al., Hydrogel bioink with multilayered interfaces improves Dispersibility of encapsulated cells in extrusion bioprinting. ACS Appl. Mater. Interfaces 11, 30585 (2019)

    Article  Google Scholar 

  • J.J. Chiu, L.J. Chen, C.N. Chen, P.L. Lee, C.I. Lee, A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37, 531 (2004)

    Article  Google Scholar 

  • Dongeun Huh, B.D. Matthews, Akiko Mammoto, Martín Montoya-Zavala, Hong Yuan Hsin, and D.E. Ingber, . Reconstituting Organ-Level Lung Functions on a Chip. Science 328, 1662 (2010)

  • Y. Fang, R.M. Eglen, Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22, 456 (2017)

    Google Scholar 

  • O. Frey, P.M. Misun, D.A. Fluri, J.G. Hengstler, A. Hierlemann, Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 5, 4250 (2014)

    Article  Google Scholar 

  • L.G. Griffith, M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211 (2006)

    Article  Google Scholar 

  • X. Han, N. Sakamoto, N. Tomita, H. Meng, M. Sato, M. Ohta, Influence of TGF-beta1 expression in endothelial cells on smooth muscle cell phenotypes and MMP production under shear stress in a co-culture model. Cytotechnology 71, 489 (2019)

    Article  Google Scholar 

  • A. Hasan, A. Paul, N.E. Vrana, X. Zhao, A. Memic, Y.S. Hwang, M.R. Dokmeci, A. Khademhosseini, Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35, 7308 (2014)

    Article  Google Scholar 

  • E. Jastrzebska, E. Tomecka, I. Jesion, Heart-on-a-chip based on stem cell biology. Biosens. Bioelectron. 75, 67 (2016)

    Article  Google Scholar 

  • E. Kaemmerer, F.P. Melchels, B.M. Holzapfel, T. Meckel, D.W. Hutmacher, D. Loessner, Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system. Acta Biomater. 10, 2551 (2014)

    Article  Google Scholar 

  • T. Korff, K. Aufgebauer, M. Hecker, Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response. Circulation 116, 2288 (2007)

    Article  Google Scholar 

  • M.D. Lavender, Z. Pang, C.S. Wallace, L.E. Niklason, G.A. Truskey, A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials 26, 4642 (2005)

    Article  Google Scholar 

  • J. Lee, Z. Estlack, H. Somaweera, X. Wang, C.M.R. Lacerda, J. Kim, A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells. Lab Chip 18, 2946 (2018)

    Article  Google Scholar 

  • D. Loessner, C. Meinert, E. Kaemmerer, L.C. Martine, K. Yue, P.A. Levett, T.J. Klein, F.P. Melchels, A. Khademhosseini, D.W. Hutmacher, Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727 (2016)

    Article  Google Scholar 

  • S. Lu, F. Cuzzucoli, J. Jiang, L.G. Liang, Y. Wang, M. Kong, X. Zhao, W. Cui, J. Li, S. Wang, Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 18, 3379 (2018)

    Article  Google Scholar 

  • G.J. Mahler, C.M. Frendl, Q. Cao, J.T. Butcher, Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells. Biotechnol. Bioeng. 111, 2326 (2014)

    Article  Google Scholar 

  • J. Malda, J. Visser, F.P. Melchels, T. Jungst, W.E. Hennink, W.J. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 25, 5011 (2013)

    Article  Google Scholar 

  • P.G. Miller, M.L. Shuler, Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng. 113, 2213 (2016)

    Article  Google Scholar 

  • S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014)

    Article  Google Scholar 

  • S. Musah, A. Mammoto, T.C. Ferrante, S.S.F. Jeanty, M. Hirano-Kobayashi, T. Mammoto, K. Roberts, S. Chung, R. Novak, M. Ingram, et al., Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 1 (2017)

    Article  Google Scholar 

  • M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, Y. Nishiyama, Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2, 014110 (2010)

    Article  Google Scholar 

  • B.D. Plouffe, T. Kniazeva, J.E. Mayer Jr., S.K. Murthy, V.L. Sales, Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine. FASEB J. 23, 3309 (2009)

    Article  Google Scholar 

  • Y. Qiu, B. Ahn, Y. Sakurai, C.E. Hansen, R. Tran, P.N. Mimche, R.G. Mannino, J.C. Ciciliano, T.J. Lamb, C.H. Joiner, et al., Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453 (2018)

    Article  Google Scholar 

  • K.J. Regehr, M. Domenech, J.T. Koepsel, K.C. Carver, S.J. Ellison-Zelski, W.L. Murphy, L.A. Schuler, E.T. Alarid, D.J. Beebe, Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132 (2009)

    Article  Google Scholar 

  • J. Ribas, Y.S. Zhang, P.R. Pitrez, J. Leijten, M. Miscuglio, J. Rouwkema, M.R. Dokmeci, X. Nissan, L. Ferreira, A. Khademhosseini, Biomechanical strain exacerbates inflammation on a Progeria-on-a-Chip model. Small 13, 1 (2017)

    Google Scholar 

  • K. SATO, K. SATO, Recent Progress in the development of microfluidic vascular models. Anal. Sci. 34, 755 (2018)

    Article  Google Scholar 

  • E.R. Shamir, A.J. Ewald, Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647 (2014)

    Article  Google Scholar 

  • A. Shlomai, R.E. Schwartz, V. Ramanan, A. Bhatta, Y.P. de Jong, S.N. Bhatia, C.M. Rice, Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc. Natl. Acad. Sci. U. S. A. 111, 12193 (2014)

    Article  Google Scholar 

  • S.A. Skoog, P.L. Goering, R.J. Narayan, Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25, 845 (2014)

    Article  Google Scholar 

  • M.M. Stanton, J. Samitier, S. Sanchez, Bioprinting of 3D hydrogels. Lab Chip 15, 3111 (2015)

    Article  Google Scholar 

  • L. Wang, M. Xiang, Y. Liu, N. Sun, M. Lu, Y. Shi, X. Wang, D. Meng, S. Chen, J. Qin, Human induced pluripotent stem cells derived endothelial cells mimicking vascular inflammatory response under flow. Biomicrofluidics 10, 014106 (2016)

    Article  Google Scholar 

  • S. Xiao, J.R. Coppeta, H.B. Rogers, B.C. Isenberg, J. Zhu, S.A. Olalekan, K.E. McKinnon, D. Dokic, A.S. Rashedi, D.J. Haisenleder, et al., A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017)

    Article  Google Scholar 

  • H.G. Yi, H. Lee, D.W. Cho, 3D printing of organs-on-chips. Bioengineering 4(1) (2017). https://doi.org/10.3390/bioengineering4010010

  • Y.S. Zhang, A. Arneri, S. Bersini, S.R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell'Erba, et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45 (2016)

    Article  Google Scholar 

  • X. Zhao, Q. Lang, L. Yildirimer, Z.Y. Lin, W. Cui, N. Annabi, K.W. Ng, M.R. Dokmeci, A.M. Ghaemmaghami, A. Khademhosseini, Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 5, 108 (2016)

    Article  Google Scholar 

  • W. Zheng, B. Jiang, D. Wang, W. Zhang, Z. Wang, X. Jiang, A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 12, 3441 (2012)

    Article  Google Scholar 

  • Y. Zheng, J. Chen, J.A. Lopez, Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nat. Commun. 6, 7858 (2015)

    Article  Google Scholar 

  • K. Zhu, S.R. Shin, T. van Kempen, Y.C. Li, V. Ponraj, A. Nasajpour, S. Mandla, N. Hu, X. Liu, J. Leijten, et al., Gold Nanocomposite bioink for printing 3D cardiac constructs. Adv. Funct. Mater. 27, 1 (2017)

    Google Scholar 

  • K. Zhu, N. Chen, X. Liu, X. Mu, W. Zhang, C. Wang, Y.S. Zhang, A general strategy for extrusion bioprinting of bio-macromolecular bioinks through alginate-Templated dual-stage crosslinking. Macromol. Biosci. 18, e1800127 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge grants from National Natural Science Foundation of China (81771971, 81772007, and 81570422, 81703470 and 81970442), the National Key R&D Program of China (2018YFC1005002), Project of Shanghai Municipal Health Commission (No. 201640134), Science and Technology Commission of Shanghai Municipality (17JC1400200, 18490740500) and Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01).

The authors declare that they have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhu or Chunsheng Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abudupataer, M., Chen, N., Yan, S. et al. Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip. Biomed Microdevices 22, 10 (2020). https://doi.org/10.1007/s10544-019-0460-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0460-3

Keywords

Navigation