当前位置: X-MOL 学术Front. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis
Frontiers of Materials Science ( IF 2.5 ) Pub Date : 2018-10-24 , DOI: 10.1007/s11706-018-0441-0
Zhongchi Wang , Gongsheng Song , Jianle Xu , Qiang Fu , Chunxu Pan

A novel graphene/Ag nanoparticles (NPs) hybrid (prepared by a physical method (PM)) was incorporated into electrospun TiO2 fibers to improve visible-lightdriven photocatalytic properties. The experimental study revealed that the graphene/Ag NPs (PM) hybrid not only decreased the bandgap energy of TiO2, but also enhanced its light response in the visible region due to the surface plasmon resonance (SPR) effect. In addition, compared with those of TiO2 fibers incorporating the graphene/Ag NPs hybrid (prepared by a chemical method (CM)), TiO2-graphene/Ag NPs (PM) fibers exhibited a higher surface photocurrent density and superior photocatalytic performance, i.e., the visible-light-driven photocatalytic activity was enhanced by 2 times. The main reasons include a lower surface defect density of the graphene/Ag NPs (PM) hybrid, a smaller particle size (10 nm) and a higher dispersity of Ag NPs, which promote the rapid transfer of photoexcited charge carriers and inhibit the recombination of photogenerated electrons and holes. It is expected that this kind of ternary electrospun fibers will be a promising candidate for applications in water splitting, solar cells, CO2 conversion and optoelectronic devices, etc.



中文翻译:

通过掺入石墨烯/银杂化物来改善可见光光催化性能的电纺二氧化钛纤维

一种新型的石墨烯/银纳米颗粒(NPs)杂物(通过物理方法(PM)制备)被引入电纺TiO 2纤维中,以改善可见光驱动的光催化性能。实验研究表明,由于表面等离振子共振(SPR)效应,石墨烯/ Ag NPs(PM)杂合物不仅降低了TiO 2的带隙能,而且增强了其在可见光区域的光响应。另外,与掺入石墨烯/ Ag NPs杂化物的TiO 2纤维(通过化学方法(CM)制备)相比,TiO 2-石墨烯/ Ag NPs(PM)纤维具有较高的表面光电流密度和优异的光催化性能,即可见光驱动的光催化活性提高了2倍。主要原因包括石墨烯/ Ag NPs(PM)杂化物的表面缺陷密度较低,较小的粒径(10 nm)和较高的Ag NPs分散性,它们促进了光激发电荷载流子的快速转移并抑制了复合材料的重组。光生电子和空穴。预计这种三元电纺纤维将成为水分解,太阳能电池,CO 2转化和光电器件等应用中的有前途的候选者。

更新日期:2018-10-24
down
wechat
bug