Skip to main content
Log in

Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A novel graphene/Ag nanoparticles (NPs) hybrid (prepared by a physical method (PM)) was incorporated into electrospun TiO2 fibers to improve visible-lightdriven photocatalytic properties. The experimental study revealed that the graphene/Ag NPs (PM) hybrid not only decreased the bandgap energy of TiO2, but also enhanced its light response in the visible region due to the surface plasmon resonance (SPR) effect. In addition, compared with those of TiO2 fibers incorporating the graphene/Ag NPs hybrid (prepared by a chemical method (CM)), TiO2-graphene/Ag NPs (PM) fibers exhibited a higher surface photocurrent density and superior photocatalytic performance, i.e., the visible-light-driven photocatalytic activity was enhanced by 2 times. The main reasons include a lower surface defect density of the graphene/Ag NPs (PM) hybrid, a smaller particle size (10 nm) and a higher dispersity of Ag NPs, which promote the rapid transfer of photoexcited charge carriers and inhibit the recombination of photogenerated electrons and holes. It is expected that this kind of ternary electrospun fibers will be a promising candidate for applications in water splitting, solar cells, CO2 conversion and optoelectronic devices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  Google Scholar 

  2. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

    Article  Google Scholar 

  3. Cozzoli P D, Comparelli R, Fanizza E, et al. Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Materials Science and Engineering C, 2003, 23(6–8): 707–713

    Article  Google Scholar 

  4. Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570

    Article  Google Scholar 

  5. Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425

    Article  Google Scholar 

  6. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  7. Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

    Article  Google Scholar 

  8. Khan S U, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243–2245

    Article  Google Scholar 

  9. Lin Z H, Xie Y, Yang Y, et al. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano, 2013, 7(5): 4554–4560

    Article  Google Scholar 

  10. Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959

    Article  Google Scholar 

  11. Ren L, Liu Y D, Qi X, et al. An architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries. Journal of Materials Chemistry, 2012, 22(40): 21513–21518

    Article  Google Scholar 

  12. Ren L, Qi X, Liu Y D, et al. Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material. Journal of Materials Chemistry, 2012, 22(23): 11765–11771

    Article  Google Scholar 

  13. Tian J, Zhao Z, Kumar A, et al. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews, 2014, 43(20): 6920–6937

    Article  Google Scholar 

  14. Ge M, Li Q, Cao C, et al. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152

    Article  Google Scholar 

  15. Kumar P S, Sundaramurthy J, Sundarrajan S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & Environmental Science, 2014, 7(10): 3192–3222

    Article  Google Scholar 

  16. Zhang J, Cai Y B, Hou X B, et al. Preparation of TiO2 nanofibrous membranes with hierarchical porosity for efficient photocatalytic degradation. The Journal of Physical Chemistry C, 2018, 122(16): 8946–8953

    Article  Google Scholar 

  17. Ren L, Li Y Z, Hou J G, et al. The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed 001 facets on photocatalysis for the photocatalytic purification of VOCs. Applied Catalysis B: Environmental, 2016, 181: 625–634

    Article  Google Scholar 

  18. Wang M, Ioccozia J, Sun L, et al. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science, 2014, 7(7): 2182–2202

    Article  Google Scholar 

  19. He Z, Que W, Chen J, et al. Photocatalytic degradation of methyl orange over nitrogen–fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis. ACS Applied Materials & Interfaces, 2012, 4(12): 6816–6826

    Article  Google Scholar 

  20. Lan L, Li Y Z, Zeng M, et al. Efficient UV–vis-infrared lightdriven catalytic abatement of benzene on amorphous manganese oxide supported on anatase TiO2 nanosheet with dominant {001} facets promoted by a photothermocatalytic synergetic effect. Applied Catalysis B: Environmental, 2017, 203: 494–504

    Article  Google Scholar 

  21. Zeng M, Li Y Z, Mao M M, et al. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catalysis, 2015, 5(6): 3278–3286

    Article  Google Scholar 

  22. Liu H H, Li Y Z, Yang Y, et al. Highly efficient UV-vis-infrared catalytic purification of benzene on CeMnxOy/TiO2 nanocomposite, caused by its high thermocatalytic activity and strong absorption in the full solar spectrum region. Journal of Materials Chemistry A, 2016, 4(25): 9890–9899

    Article  Google Scholar 

  23. Ma Y, Li Y Z, Mao M Y, et al. Synergetic effect between photocatalysis on TiO2 and solar light-driven thermocatalysis on MnOx for benzene purification on MnOx/TiO2 nanocomposites. Journal of Materials Chemistry A, 2015, 3(10): 5509–5516

    Article  Google Scholar 

  24. Ren X H, Qi X, Shen Y Z, et al. 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity. Journal of Physics D: Applied Physics, 2016, 49(31): 315304–315312

    Article  Google Scholar 

  25. Mohamed A E R, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode: a review. Energy & Environmental Science, 2011, 4(4): 1065–1086

    Article  Google Scholar 

  26. Zhang J, Xiao F X, Xiao G, et al. Linker-assisted assembly of 1D TiO2 nanobelts/3D CdS nanospheres hybrid heterostructure as efficient visible light photocatalyst. Applied Catalysis A, 2016, 521: 50–56

    Article  Google Scholar 

  27. Wang C, Astruc D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chemical Society Reviews, 2014, 43(20): 7188–7216

    Article  Google Scholar 

  28. Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry C, 2010, 20(14): 2801–2806

    Article  Google Scholar 

  29. Kong M, Li Y, Chen X, et al. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society, 2011, 133(41): 16414–16417

    Article  Google Scholar 

  30. Wen Y, Ding H, Shan Y. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite. Nanoscale, 2011, 3(10): 4411–4417

    Article  Google Scholar 

  31. Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 2011, 46(8): 2622–2626

    Article  Google Scholar 

  32. Li X, Zhu J, Wei B. Hybrid nanostructures of metal/twodimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews, 2016, 45(11): 3145–3187

    Article  Google Scholar 

  33. Tang X Z, Cao Z, Zhang H B, et al. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chemical Communications, 2011, 47(11): 3084–3086

    Article  Google Scholar 

  34. Zhou Y, Yang J, He T, et al. Highly stable and dispersive silver nanoparticle–graphene composites by a simple and low-energyconsuming approach and their antimicrobial activity. Small, 2013, 9(20): 3445–3454

    Article  Google Scholar 

  35. Liu C, Wang K, Luo S, et al. Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small, 2011, 7(9): 1203–1206

    Article  Google Scholar 

  36. Pavithra C L P, Sarada B V, Rajulapati K V, et al. A new electrochemical approach for the synthesis of copper–graphene nanocomposite foils with high hardness. Scientific Reports, 2014, 4(6): 4049–4055

    Google Scholar 

  37. Yang J, Zang C, Sun L, et al. Synthesis of graphene/Ag nanocomposite with good dispersibility and electroconductibility via solvothermal method. Materials Chemistry and Physics, 2011, 129(1–2): 270–274

    Article  Google Scholar 

  38. Guardia L, Villar-Rodil S, Paredes J I, et al. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon, 2012, 50(3): 1014–1024

    Article  Google Scholar 

  39. Sygletou M, Tzourmpakis P, Petridis C, et al. Laser induced nucleation of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics. Journal of Materials Chemistry A, 2016, 4(3): 1020–1027

    Article  Google Scholar 

  40. Liu S, Tian J, Wang L, et al. Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. Journal of Nanoparticle Research, 2011, 13(10): 4539–4548

    Article  Google Scholar 

  41. Zhang Q, Ye S, Chen X, et al. Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Applied Catalysis B: Environmental, 2017, 203: 673–683

    Article  Google Scholar 

  42. Liu C H, Mao B H, Gao J, et al. Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon, 2012, 50(8): 3008–3014

    Article  Google Scholar 

  43. Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339

    Article  Google Scholar 

  44. Wang C Y, Liu C Y, Liu Y, et al. Surface-enhanced Raman scattering effect for Ag/TiO2 composite particles. Applied Surface Science, 1999, 147(1–4): 52–57

    Article  Google Scholar 

  45. Gao L, Ren W, Li F, et al. Total color difference for rapid and accurate identification of graphene. ACS Nano, 2008, 2(8): 1625–1633

    Article  Google Scholar 

  46. Cançado L G, Jorio A, Ferreira E H, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters, 2011, 11(8): 3190–3196

    Article  Google Scholar 

  47. Zhang L, Zhang Q, Xie H, et al. Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Applied Catalysis B: Environmental, 2017, 201: 470–478

    Article  Google Scholar 

  48. Zhang W F, He Y L, Zhang M S, et al. Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics D: Applied Physics, 2000, 33(8): 912–916

    Article  Google Scholar 

  49. Zhang Y, Li D, Tan X, et al. High quality graphene sheets from graphene oxide by hot-pressing. Carbon, 2013, 54(2): 143–148

    Article  Google Scholar 

  50. Lang Q, Chen Y, Huang T, et al. Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 182–190

    Article  Google Scholar 

  51. Zhang J, Xiao F X, Xiao G, et al. Self-assembly of a Ag nanoparticle-modified and graphene-wrapped TiO2 nanobelt ternary heterostructure: surface charge tuning toward efficient photocatalysis. Nanoscale, 2014, 6(19): 11293–11302

    Article  Google Scholar 

  52. Wu J, Luo C, Li D, et al. Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for highperformance photocatalysis. Journal of Materials Science, 2017, 52(3): 1285–1295

    Article  Google Scholar 

  53. Sher ShahMS, Zhang K, Park A R, et al. Single-step solvothermal synthesis of mesoporous Ag–TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale, 2013, 5(11): 5093–5101

    Article  Google Scholar 

  54. Shi J, Chen J, Feng Z, et al. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. The Journal of Physical Chemistry C, 2007, 111(2): 693–699

    Article  Google Scholar 

  55. Luo C, Li D, Wu W, et al. Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Applied Catalysis B: Environmental, 2015, 166–167: 217–223

    Article  Google Scholar 

  56. Huang H J, Zhen S Y, Li P Y, et al. Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction. Optics Express, 2016, 24(14): 15603–15608

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shenzhen Science and Technology Innovation Committee 2017 basic research (free exploration) project of Shenzhen City of China (No. JCYJ20170303170542173), the National Natural Science Foundation of China (Grant No. 11174227), and the Chinese Universities Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxu Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Song, G., Xu, J. et al. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis. Front. Mater. Sci. 12, 379–391 (2018). https://doi.org/10.1007/s11706-018-0441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-018-0441-0

Keywords

Navigation