当前位置: X-MOL 学术J. Solut. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Reaction of 2-Chloroquinoxaline with Piperidine in DMSO–H2O and DMF–H2O Mixtures: Kinetics and Solvent Effects
Journal of Solution Chemistry ( IF 1.4 ) Pub Date : 2019-09-01 , DOI: 10.1007/s10953-019-00911-0
Magda F. Fathalla , Yasser R. Elmarassi , Omasaad F. Omer , Ezzat A. Hamed

The rate constant of the reaction of 2-chloroquinoxaline with piperidine was measured spectrophotometrically using different aqueous solutions containing DMSO or DMF. Whatever the experimental conditions used, this reaction follows pseudo first order kinetics and is not amine catalyzed. Furthermore, the second order rate constant, kA, increases with increasing percentage of DMSO in the solution, in contrast to DMF. The kA values were then correlated with solvent parameters α, β, π*, ETN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\text{T}}^{\text{N}}$$\end{document} and Y. Plots of log10kA against the reciprocal of the dielectric constant at 25 °C were found to be nonlinear in DMSO, while a linear relationship with a negative slope was found in the case of DMF. This difference between the solvents is presumably due to different solvation pathways between their initial and transition states. Thus, activation parameters ΔH#, ΔS# and ΔG# were evaluated and discussed to support this hypothesis. Finally, DFT calculations were performed, using the B3LYP functional and 6-311G(d,p) basis set, to determine optimum molecular geometry. IR, NMR spectra for both reactant and product and were then compared with experimental values.

中文翻译:

2-氯喹喔啉与哌啶在 DMSO-H2O 和 DMF-H2O 混合物中的反应:动力学和溶剂效应

使用含有 DMSO 或 DMF 的不同水溶液,通过分光光度法测量 2-氯喹喔啉与哌啶的反应速率常数。无论使用何种实验条件,该反应都遵循伪一级动力学并且不是胺催化的。此外,与 DMF 相比,二阶速率常数 kA 随着溶液中 DMSO 百分比的增加而增加。然后将 kA 值与溶剂参数 α、β、π*、ETN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\text{T}}^{\text{N}}$$\end{document}和 Y。发现 log10kA 与 25 °C 下介电常数倒数的关系图在 DMSO 中是非线性的,而在 DMF 的情况下发现与负斜率的线性关系。溶剂之间的这种差异可能是由于它们的初始状态和过渡状态之间的溶剂化途径不同。因此,评估和讨论了激活参数 ΔH#、ΔS# 和 ΔG# 以支持这一假设。最后,使用 B3LYP 泛函和 6-311G(d,p) 基组进行 DFT 计算,以确定最佳分子几何形状。反应物和产物的 IR、NMR 光谱,然后与实验值进行比较。溶剂之间的这种差异可能是由于它们的初始状态和过渡状态之间的溶剂化途径不同。因此,评估和讨论了激活参数 ΔH#、ΔS# 和 ΔG# 以支持这一假设。最后,使用 B3LYP 泛函和 6-311G(d,p) 基组进行 DFT 计算,以确定最佳分子几何形状。反应物和产物的 IR、NMR 光谱,然后与实验值进行比较。溶剂之间的这种差异可能是由于它们的初始状态和过渡状态之间的溶剂化途径不同。因此,评估和讨论了激活参数 ΔH#、ΔS# 和 ΔG# 以支持这一假设。最后,使用 B3LYP 泛函和 6-311G(d,p) 基组进行 DFT 计算,以确定最佳分子几何形状。反应物和产物的 IR、NMR 光谱,然后与实验值进行比较。
更新日期:2019-09-01
down
wechat
bug