Skip to main content
Log in

The Reaction of 2-Chloroquinoxaline with Piperidine in DMSO–H2O and DMF–H2O Mixtures: Kinetics and Solvent Effects

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The rate constant of the reaction of 2-chloroquinoxaline with piperidine was measured spectrophotometrically using different aqueous solutions containing DMSO or DMF. Whatever the experimental conditions used, this reaction follows pseudo first order kinetics and is not amine catalyzed. Furthermore, the second order rate constant, kA, increases with increasing percentage of DMSO in the solution, in contrast to DMF. The kA values were then correlated with solvent parameters α, β, π*, \(E_{\text{T}}^{\text{N}}\) and Y. Plots of log10kA against the reciprocal of the dielectric constant at 25 °C were found to be nonlinear in DMSO, while a linear relationship with a negative slope was found in the case of DMF. This difference between the solvents is presumably due to different solvation pathways between their initial and transition states. Thus, activation parameters ΔH#, ΔS# and ΔG# were evaluated and discussed to support this hypothesis. Finally, DFT calculations were performed, using the B3LYP functional and 6-311G(d,p) basis set, to determine optimum molecular geometry. IR, NMR spectra for both reactant and product and were then compared with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tandon, V.K., Yadav, D.B., Maurya, H.K., Chaturvedi, A.K., Shukla, P.K.: Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem. 14, 6120–6126 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Kotharkar, S.A., Shinde, D.B.: Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno [3, 4-b] quinoxalines. Bioorg. Med. Chem. Lett. 16, 6181–6184 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Vyas, D., Chauhan, N., Parikh, A.: Synthesis and anti microbial activity of quinoxaline based thiazolidinones and azetidinones. Indian J. Chem. Sect B 46, 1699–1702 (2007)

    Google Scholar 

  4. Mashevskaya, I., Makhmudov, R., Aleksandrova, G., Golovnina, O., Duvalov, A., Maslivets, A.: Synthesis and study of the antibacterial and analgesic activity of 3-acyl-1,2,4,5-tetrahydro-[1,2-a] quinoxaline-1,2,4-triones. Pharm. Chem. J. 35, 196–198 (2001)

    Article  CAS  Google Scholar 

  5. Carta, A., Loriga, M., Paglietti, G., Mattana, A., Fiori, P.L., Mollicotti, P., Sechi, L., Zanetti, S.: Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline-1,4-dioxides. Eur. J. Med. Chem. 39, 195–203 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Seitz, L.E., Suling, W.J., Reynolds, R.C.: Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem. 45, 5604–5606 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Zarranz, B., Jaso, A., Aldana, I., Monge, A.: Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg. Med. Chem. 11, 2149–2156 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Jaso, A., Zarranz, B., Aldana, I., Monge, A.: Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-mycobacterium tuberculosis agents. J. Med. Chem. 48, 2019–2025 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Jaso, A., Zarranz, B., Aldana, I., Monge, A.: Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1, 4-di-N-oxide derivatives as anti-mycobacterium tuberculosis agents. Eur. J. Med. Chem. 38, 791–800 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Burguete, A., Pontiki, E., Hadjipavlou-Litina, D., Villar, R., Vicente, E., Solano, B., Ancizu, S., Pérez-Silanes, S., Aldana, I., Monge, A.: Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett. 17, 6439–6443 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Wagle, S., Adhikari, A.V., Kumari, N.S.: Synthesis of some new 2-(3-methyl-7-substituted-2-oxoquinoxalinyl)-5-(aryl)-1,3,4-oxadiazoles as potential non-steroidal antiinflammatory and analgesic agents. Indian J. Chem. Sect B 47, 439–448 (2008)

    Google Scholar 

  12. Monge, A., Palop, J., Urbasos, I., Fernández-Alvarez, E.: New quinoxaline and pyrimido [4,5‐b] quinoxaline derivatives. Potential antihypertensive and blood platelet antiaggregating agents. J. Heterocycl. Chem. 26, 1623–1626 (1989)

    Article  CAS  Google Scholar 

  13. Kurasawa, Y., Muramatsu, M., Okamoto, Y., Takada, A.: Synthesis of novel 3-(α-arylhydrazono-1,3,4-oxadiazol-2-ylmethyl)-2-oxo-1,2-dihydroquinoxalines and their characteristic tautomerism between the hydrazone imine and diazenyl enamine forms. J. Heterocycl. Chem. 23, 637–639 (1986)

    Article  CAS  Google Scholar 

  14. Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Burlingame, A.L., Prusiner, S.B.: Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993)

    Article  CAS  PubMed  Google Scholar 

  15. Zielkiewicz, J.: Solvation of DMF in the N,N-dimethylformamide + alcohol + water mixtures investigated by means of the Kirkwood–Buff integrals. J. Phys. Chem. 99, 4787–4793 (1995)

    Article  CAS  Google Scholar 

  16. Sengwa, R., Khatri, V., Sankhla, S.: Structure and hydrogen bonding in binary mixtures of N, N-dimethylformamide with some dipolar aprotic and protic solvents by dielectric characterization. Indian J. Chem. Sect A 48, 512–519 (2009)

    Google Scholar 

  17. Patai, S.: The Chemistry of Amino, Nitroso, Nitro and Related Groups, Chapter 26, pp. 1215–1300. Wiley, Chichester (1996)

    Book  Google Scholar 

  18. Al-Howsaway, H.O., Fathalla, M.F., El-Bardan, A.A., Hamed, E.A.: Reaction of 4-chloro-3,5-dinitrobenzotrifluoride with aniline derivatives. Substituent effects. J. Chem. Res. 2007, 509–512 (2007)

    Article  Google Scholar 

  19. Fathalla, M.F.: Solvent effect on the alkaline hydrolysis of 2-thiophenyl-3,5-dinitropyridine. Int. J. Chem. Kinet. 38, 159–165 (2006)

    Article  CAS  Google Scholar 

  20. Fathalla, M.F., Hamed, E.A.: Kinetics of the nucleophilic substitution reactions of methyl 2,4-dichloro-3,5-dinitrobenzoate with piperidine, piperazine, morpholine and thiomorpholine in methanol and benzene. J. Chem. Res. 2006, 413–416 (2006)

    Article  Google Scholar 

  21. Hamed, E., El-Bardan, A., Saad, E., Gohar, G., Hassan, G.: Nucleophilic substitutions at the pyridine ring. Conformational preference of the products and kinetics of the reactions of 2-chloro-3-nitro-and 2-chloro-5-nitro-pyridines with arenethiolates. J. Chem. Soc. Perkin Trans. 2, 2415–2422 (1997)

    Article  Google Scholar 

  22. EL Hegazy, F.E.Z.M., Abdel Fattah, S.Z., Hamed, E.A., Sharaf, S.M.: Kinetics of the reaction of 2-chloro-3,5-dinitropyridine with meta-and para-substituted anilines in methanol. J. Phys. Org. Chem. 13, 549–554 (2000)

    Article  CAS  Google Scholar 

  23. Asghar, B.H., Fathalla, M.F., Hamed, E.A.: Solvent and substituent effects on the reaction of 2- and 4-chloro-3,5-dinitrobenzotrifluorides with substituted anilines. Int. J. Chem. Kinet. 41, 777–786 (2009)

    Article  CAS  Google Scholar 

  24. Fathalla, M.F., Kassem, T.S., Hamed, E.A.: Kinetics of the reaction between methyl 2,4-dichloro-3,5-dinitrobenzoate and piperidine—solvent effect. Indian J. Chem. Sect A 47A, 1348–1354 (2008)

    CAS  Google Scholar 

  25. Fathalla, M.F.: Kinetics of the reaction of 2-chloro-quinoxaline with hydroxide ion in ACN–H2O and DMSO–H2O binary solvent mixtures. J. Solution Chem. 40, 1258–1270 (2011)

    Article  CAS  Google Scholar 

  26. Isanbor, C., Emokpae, T.A., Crampton, M.R.: Steric and electronic effects on the mechanism of nucleophilic substitution (SN Ar) reactions of some phenyl 2,4,6-trinitrophenyl ethers with aniline and N-methylaniline in acetonitrile and in dimethyl sulfoxide. J. Chem. Soc. Perkin Trans. 2, 2019–2024 (2002)

    Article  CAS  Google Scholar 

  27. Crampton, M.R., Emokpae, T.A., Isanbor, C., Batsanov, A.S., Howard, J.A., Mondal, R.: Effects of ortho-and para-ring activation on the kinetics of SNAr reactions of 1-chloro-2-nitro-and 1-phenoxy-2-nitrobenzenes with aliphatic amines in acetonitrile. Eur. J. Org. Chem. 1222–1230 (2006)

    Article  CAS  Google Scholar 

  28. Banjoko, O., Babatunde, I.A.: Rationalization of the conflicting effects of hydrogen bond donor solvent on nucleophilic aromatic substitution reactions in non-polar aprotic solvent: reactions of phenyl 2,4,6-trinitrophenyl ether with primary and secondary amines in benzene–methanol mixtures. Tetrahedron 60, 4645–4654 (2004)

    Article  CAS  Google Scholar 

  29. Smith, M.B., March, J.: March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley, Hoboken (2007)

    Google Scholar 

  30. Acevedo, O., Jorgensen, W.L.: Solvent effects and mechanism for a nucleophilic aromatic substitution from QM/MM simulations. Org. Lett. 6, 2881–2884 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Ibrahim, M.F., Abdel-Reheem, H.A., Khattab, S.N., Hamed, E.A.: Nucleophilic substitution reactions of 2,4-dinitrobenzene derivatives with hydrazine: leaving group and solvent effects. Int. J. Chem. 5, 33–45 (2013)

    Article  CAS  Google Scholar 

  32. Youssef, N.M., Elshazly, S., Hamed, E.A.: Kinetic study on the morpholinolysis of esters analogues to flutamide in MeOH–H2O mixtures: effect of medium on reactivity and mechanism. Int. J. Chem. 7, 168–176 (2015)

    Article  CAS  Google Scholar 

  33. Fathalla, M., El-Subruiti, G., El-Marassi, Y.: Kinetic and thermodynamic studies of uncatalysed and Hg(II)-catalysed solvolysis of a chlorocobalt(III) complex in binary aqueous media. Prog. React. Kinet. Mech. 34, 183–197 (2009)

    Article  CAS  Google Scholar 

  34. El-Shazly, S.A., Babaqi, A.A., Mohamed, M.T., Zaghlol, A.A., Amira, M.F.: Solvent effects on the aquation of chloropentammine-cobalt(III) perchlorate in ethanol–water. Trans. Met. Chem. 16, 488–491 (1991)

    Article  CAS  Google Scholar 

  35. Ismail, A.M., Seleim, S.M., Zaghloul, A.A.-E.-H., Amira, M.F.: Kinetics and mechanism of aquation of bromopentammine cobalt(III) cation assisted by ion-pairing succinate anion in ethane-2-diol–water mixtures. Eur. J. Chem. 3, 196–201 (2012)

    Article  CAS  Google Scholar 

  36. Puranik, S.M., Kumbharkhane, A.C., Mehrotra, S.C.: Dielectric study of dimethyl sulfoxide–water mixtures using the time-domain technique. J. Chem. Soc. Faraday Trans. I 88, 433–435 (1992)

    Article  CAS  Google Scholar 

  37. Critchfield, F.E., Gibson, J.A., Hall, J.L.: Dielectric constant and refractive index from 20 to 35° and density at 25° for the system tetrahydrofuran—water 1. J. Am. Chem. Soc. 75, 6044–6045 (1953)

    Article  CAS  Google Scholar 

  38. Fathalla, M.F., Ismail, A.M.: Kinetics and reactivity of indole-2,3-dione ring towards alkali in dimethylsulphoxide–water mixtures. Indian J. Chem. Sect A 45, 901–904 (2006)

    Google Scholar 

  39. Radman, R.F., Ismail, A.M., Al-Jallal, N.A.: Kinetics of the alkaline hydrolysis of isatin and N-methylisatin in water and water–N, N-dimethylacetamide mixtures. J. Saudi Chem. Soc. 14, 223–229 (2010)

    Article  CAS  Google Scholar 

  40. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 ed. Gaussian Inc., Wallingford CT (2009)

    Google Scholar 

  41. Dennington, R., Keith, T., Millam, J. Semichem Inc., Shawnee Mission Ks. GaussView, Version, 5 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda F. Fathalla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathalla, M.F., Elmarassi, Y.R., Omer, O.F. et al. The Reaction of 2-Chloroquinoxaline with Piperidine in DMSO–H2O and DMF–H2O Mixtures: Kinetics and Solvent Effects. J Solution Chem 48, 1287–1308 (2019). https://doi.org/10.1007/s10953-019-00911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00911-0

Keywords

Navigation