当前位置: X-MOL 学术Phys. Mesomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Infrastructure of Attosecond Sensors and Actuators of Nonequilibrium Physical Media in Smart Materials
Physical Mesomechanics ( IF 1.6 ) Pub Date : 2019-09-01 , DOI: 10.1134/s1029959919050096
S. A. Beznosyuk , O. A. Maslova , M. S. Zhukovsky

The advances in new smart materials are linked with attosecond subatomic technologies which can create entangled subatomic electron pairs by attosecond hard ultraviolet and soft X rays in addition to one-electron excitations by femtosecond optical pulses. The quantum infrastructure of nonequilibrium physical media in smart materials is provided by the Fermi and Bose gas of quasi-electron excitations, and the quantum infrastructure of their space-time scales is specified by the quantum mechanisms of two-electron attophysics and one-electron femtochemistry. The primary scale is subatomic (1.0 pm to 0.1 nm), and the next scale is supra-atomic (0.1 to 10.0 nm), being the scale of nanoelectromechanical systems of sensors and actuators that provide self-organization in the space-time hierarchy of nano-, micro-, meso-, and macroscopic dissipative structures of nonequilibrium physical media in smart materials. Here we show that any quantum nanoelectromechanical system can alternately be a sensor and an actuator of dissipative structures with a two-clock cycle: an attosecond sensor of entangled two-electron excitations and a femtosecond actuator of electromechanical motion modes in a nonequilibrium physical medium. For such nanoelectromechanical sensors-actuators, the motion rhythm is three orders of magnitude faster than for femtosecond nanomolecular sensors of one-electron excitations and nanomolecular actuators of vibrationrotation modes in nonequilibrium physical media.

中文翻译:

智能材料中非平衡物理介质阿秒传感器和执行器的量子基础设施

新智能材料的进步与阿秒亚原子技术有关,该技术除了通过飞秒光脉冲进行单电子激发外,还可以通过阿秒硬紫外线和软 X 射线产生纠缠的亚原子电子对。智能材料中非平衡物理介质的量子基础结构由准电子激发的费米和玻色气体提供,其时空尺度的量子基础结构由双电子原子物理和单电子飞秒化学的量子机制指定. 主要尺度是亚原子(1.0 pm 到 0.1 nm),下一个尺度是超原子(0.1 到 10.0 nm),是传感器和执行器的纳米机电系统的尺度,它们在时空层次结构中提供自组织纳米、微米、中观、智能材料中非平衡物理介质的宏观耗散结构。在这里,我们展示了任何量子纳米机电系统都可以交替成为具有两个时钟周期的耗散结构的传感器和执行器:纠缠双电子激发的阿秒传感器和非平衡物理介质中机电运动模式的飞秒执行器。对于这种纳米机电传感器-致动器,运动节奏比单电子激发的飞秒纳米分子传感器和非平衡物理介质中振动旋转模式的纳米分子致动器快三个数量级。在这里,我们展示了任何量子纳米机电系统都可以交替成为具有两个时钟周期的耗散结构的传感器和执行器:纠缠双电子激发的阿秒传感器和非平衡物理介质中机电运动模式的飞秒执行器。对于这种纳米机电传感器-致动器,运动节奏比单电子激发的飞秒纳米分子传感器和非平衡物理介质中振动旋转模式的纳米分子致动器快三个数量级。在这里,我们展示了任何量子纳米机电系统都可以交替成为具有两个时钟周期的耗散结构的传感器和执行器:纠缠双电子激发的阿秒传感器和非平衡物理介质中机电运动模式的飞秒执行器。对于这种纳米机电传感器-致动器,运动节奏比单电子激发的飞秒纳米分子传感器和非平衡物理介质中振动旋转模式的纳米分子致动器快三个数量级。
更新日期:2019-09-01
down
wechat
bug