当前位置: X-MOL 学术Top. Curr. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections.
Topics in Current Chemistry ( IF 7.1 ) Pub Date : 2016-08-31 , DOI: 10.1007/s41061-015-0003-1
Loïc Bertrand 1, 2 , Sylvain Bernard 3 , Federica Marone 4 , Mathieu Thoury 1, 2 , Ina Reiche 5, 6 , Aurélien Gourrier 7, 8, 9 , Philippe Sciau 10 , Uwe Bergmann 11
Affiliation  

Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.

中文翻译:

从文化和自然历史资料集中对材料进行同步加速研究的新兴方法。

同步加速器为研究来自文化和自然遗产的古代材料提供了重要的方法和手段。在元素,密度和折射对比的基础上,开发了可视化(表面或体积)形态的新方法。它们现在适用于各种材料,从历史文物到古生物学标本。由于光子源的高通量和高光谱分辨率,同步加速器光束的可调谐性是基于同步加速器技术的主要化学形态学能力的起源。尽管直到最近,基于光子的物种形成主要适用于无机材料,但基于STXM和深紫外光致发光等新技术的发展为研究有机和杂化材料(例如肥皂和有机金属)的物种形成提供了新的机会,在大视野内具有亚微米级的空间分辨率。结构方法也不断得到改进,并越来越多地应用于层次结构化的材料,其组织是由生物过程或制造过程产生的。高清晰度(光谱)成像似乎是当前用于文化和自然遗产材料研究的新同步加速器技术趋势的主要驱动力。
更新日期:2019-11-01
down
wechat
bug