当前位置: X-MOL 学术Annu. Rev. Chem. Biomol. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crystal Engineering for Catalysis.
Annual Review of Chemical and Biomolecular Engineering ( IF 8.4 ) Pub Date : 2018-03-24 , DOI: 10.1146/annurev-chembioeng-060817-083953
Jeffrey D Rimer 1 , Aseem Chawla 1 , Thuy T Le 1
Affiliation  

Crystal engineering relies upon the ability to predictively control intermolecular interactions during the assembly of crystalline materials in a manner that leads to a desired (and predetermined) set of properties. Economics, scalability, and ease of design must be leveraged with techniques that manipulate the thermodynamics and kinetics of crystal nucleation and growth. It is often challenging to exact simultaneous control over multiple physicochemical properties, such as crystal size, habit, chirality, polymorph, and composition. Engineered materials often rely upon postsynthesis (top-down) processes to introduce properties that would otherwise be challenging to attain through direct (bottom-up) approaches. We discuss the application of crystal engineering to heterogeneous catalysts with a focus on four general themes: ( a) tailored nanocrystal size, ( b) controlled environments surrounding active sites, ( c) tuned morphology with well-defined facets, and ( d) hierarchical materials with disparate pore size and active site distributions. We focus on nonporous materials, including metals and metal oxides, and two classes of porous materials: zeolites and metal organic frameworks. We review novel synthesis methods involving synergistic experimental and computational design approaches, the challenges facing catalyst development, and opportunities for future advancement in crystal engineering.

中文翻译:

晶体工程催化。

晶体工程依赖于以导致期望的(和预定的)性能组的方式预测性地控制晶体材料组装期间的分子间相互作用的能力。必须通过操纵晶体成核和生长的热力学和动力学的技术来利用经济性,可扩展性和易于设计的特性。精确地同时控制多种物理化学特性(例如晶体大小,习性,手性,多晶型物和组成)通常具有挑战性。工程材料通常依赖于后期合成(自上而下)过程来引入原本难以通过直接(自下而上)方法实现的特性。我们讨论晶体工程在非均相催化剂中的应用,重点是四个通用主题:(a)量身定制的纳米晶体尺寸,(b)围绕活性位点的受控环境,(c)具有明确定义的刻面的调整形态,以及(d)具有不同孔径和活性位点分布的分层材料。我们专注于非多孔材料,包括金属和金属氧化物,以及两类多孔材料:沸石和金属有机骨架。我们回顾了涉及协同实验和计算设计方法的新型合成方法,催化剂开发面临的挑战以及晶体工程未来发展的机会。以及两类多孔材料:沸石和金属有机骨架。我们回顾了涉及协同实验和计算设计方法的新型合成方法,催化剂开发面临的挑战以及晶体工程未来发展的机会。以及两类多孔材料:沸石和金属有机骨架。我们回顾了涉及协同实验和计算设计方法的新型合成方法,催化剂开发面临的挑战以及晶体工程未来发展的机会。
更新日期:2019-11-01
down
wechat
bug