1932

Abstract

Crystal engineering relies upon the ability to predictively control intermolecular interactions during the assembly of crystalline materials in a manner that leads to a desired (and predetermined) set of properties. Economics, scalability, and ease of design must be leveraged with techniques that manipulate the thermodynamics and kinetics of crystal nucleation and growth. It is often challenging to exact simultaneous control over multiple physicochemical properties, such as crystal size, habit, chirality, polymorph, and composition. Engineered materials often rely upon postsynthesis (top-down) processes to introduce properties that would otherwise be challenging to attain through direct (bottom-up) approaches. We discuss the application of crystal engineering to heterogeneous catalysts with a focus on four general themes: () tailored nanocrystal size, () controlled environments surrounding active sites, () tuned morphology with well-defined facets, and () hierarchical materials with disparate pore size and active site distributions. We focus on nonporous materials, including metals and metal oxides, and two classes of porous materials: zeolites and metal organic frameworks. We review novel synthesis methods involving synergistic experimental and computational design approaches, the challenges facing catalyst development, and opportunities for future advancement in crystal engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-083953
2018-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-083953.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-083953&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Grand View Res 2016. Catalyst Market Size Expected to Reach $34.3 Billion by 2024. Press Release, June
  2. 2.  Schmid G 1992. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92:1709–27
    [Google Scholar]
  3. 3.  Shylesh S, Schünemann V, Thiel WR 2010. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49:3428–59
    [Google Scholar]
  4. 4.  Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN et al. 2007. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–97
    [Google Scholar]
  5. 5.  Zhou K, Li Y 2012. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51:602–13
    [Google Scholar]
  6. 6.  Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun S-G 2011. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev 40:4167–85
    [Google Scholar]
  7. 7.  Selloni A 2008. Crystal growth: Anatase shows its reactive side. Nat. Mater. 7:613–15
    [Google Scholar]
  8. 8.  Quan Z, Wang Y, Fang J 2013. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 46:191–202
    [Google Scholar]
  9. 9.  Ruditskiy A, Peng HC, Xia YN 2016. Shape-controlled metal nanocrystals for heterogeneous catalysis. Annu. Rev. Chem. Biomol. Eng. 7:327–48
    [Google Scholar]
  10. 10.  Sholl DS, Gellman AJ 2009. Developing chiral surfaces for enantioselective chemical processing. AIChE J 55:2484–90
    [Google Scholar]
  11. 11.  Hazen RM, Sholl DS 2003. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2:367
    [Google Scholar]
  12. 12.  Gellman AJ 2010. Chiral surfaces: accomplishments and challenges. ACS Nano 4:5–10
    [Google Scholar]
  13. 13.  James JN, Sholl DS 2008. Theoretical studies of chiral adsorption on solid surfaces. Curr. Opin. Colloid Interface Sci. 13:60–64
    [Google Scholar]
  14. 14.  Gellman AJ, Tysoe WT, Zaera F 2015. Surface chemistry for enantioselective catalysis. Catal. Lett. 145:220–32
    [Google Scholar]
  15. 15.  Zhang L, Niu W, Xu G 2012. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7:586–605
    [Google Scholar]
  16. 16.  Dupont J, Scholten JD 2010. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev. 39:1780–804
    [Google Scholar]
  17. 17.  Tan YN, Lee JY, Wang DIC 2010. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 132:5677–86
    [Google Scholar]
  18. 18.  Li L, Deng J, Chen J, Xing X 2016. Topochemical molten salt synthesis for functional perovskite compounds. Chem. Sci. 7:855–65
    [Google Scholar]
  19. 19.  Susman MD, Pham HN, Datye AK, Chinta S, Rimer JD 2018. Factors governing MgO(111) faceting in the thermal decomposition of oxide precursors. Chem. Mater. In press. https://doi.org/10.1021/acs.chemmater.7b05302
    [Crossref]
  20. 20.  Zhang J, Kuang Q, Jiang Y, Xie Z 2016. Engineering high-energy surfaces of noble metal nanocrystals with enhanced catalytic performances. Nano Today 11:661–77
    [Google Scholar]
  21. 21.  Tao A, Sinsermsuksakul P, Yang PD 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 45:4597–601
    [Google Scholar]
  22. 22.  Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L 2008. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem. Int. Ed. 47:8901–4
    [Google Scholar]
  23. 23.  Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA 2010. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 132:14012–14
    [Google Scholar]
  24. 24.  Jiang Q, Jiang Z, Zhang L, Lin H, Yang N et al. 2011. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res 4:612–22
    [Google Scholar]
  25. 25.  Zhang L, Zhang J, Kuang Q, Xie S, Jiang Z et al. 2011. Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 133:17114–17
    [Google Scholar]
  26. 26.  Ye X, Zheng C, Chen J, Gao Y, Murray CB 2013. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 13:765–71
    [Google Scholar]
  27. 27.  Huang X, Zhao Z, Fan J, Tan Y, Zheng N 2011. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 133:4718–21
    [Google Scholar]
  28. 28.  Kang Y, Ye X, Murray CB 2010. Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem. Int. Ed. 49:6156–59
    [Google Scholar]
  29. 29.  Hwang SY, Zhang M, Zhang C, Ma B, Zheng J, Peng Z 2014. Carbon monoxide in controlling the surface formation of Group VIII metal nanoparticles. Chem. Commun. 50:14013–16
    [Google Scholar]
  30. 30.  Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P 2007. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 6:692–97
    [Google Scholar]
  31. 31.  Lai J, Niu W, Li S, Wu F, Luque R, Xu G 2016. Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 4:807–12
    [Google Scholar]
  32. 32.  Zhang Z-c, Hui J-f, Liu Z-C, Zhang X, Zhuang J, Wang X 2012. Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities. Langmuir 28:14845–48
    [Google Scholar]
  33. 33.  Xia BY, Wu HB, Wang X, Lou XW 2013. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 52:12337–40
    [Google Scholar]
  34. 34.  Personick ML, Langille MR, Zhang J, Mirkin CA 2011. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 11:3394–98
    [Google Scholar]
  35. 35.  Lin H-X, Lei Z-C, Jiang Z-Y, Hou C-P, Liu D-Y et al. 2013. Supersaturation-dependent surface structure evolution: from ionic, molecular to metallic micro/nanocrystals. J. Am. Chem. Soc. 135:9311–14
    [Google Scholar]
  36. 36.  Langille MR, Personick ML, Zhang J, Mirkin CA 2012. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 134:14542–54
    [Google Scholar]
  37. 37.  Yang C-W, Chanda K, Lin P-H, Wang Y-N, Liao C-W, Huang MH 2011. Fabrication of Au–Pd core–shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc. 133:19993–20000
    [Google Scholar]
  38. 38.  Zhang X, Liu D, Xu D, Asahina S, Cychosz KA et al. 2012. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336:1684–87
    [Google Scholar]
  39. 39.  Oleksiak MD, Rimer JD 2014. Synthesis of zeolites in the absence of organic structure-directing agents: factors governing crystal selection and polymorphism. Rev. Chem. Eng. 30:1–49
    [Google Scholar]
  40. 40.  Mintova S, Grand J, Valtchev V 2016. Nanosized zeolites: Quo vadis?. C. R. Chim. 19:183–91
    [Google Scholar]
  41. 41.  Tosheva L, Valtchev VP 2005. Nanozeolites: synthesis, crystallization mechanism, and applications. Chem. Mater. 17:2494–513
    [Google Scholar]
  42. 42.  Ng E-P, Chateigner D, Bein T, Valtchev V, Mintova S 2012. Capturing ultrasmall EMT zeolite from template-free systems. Science 335:70–73
    [Google Scholar]
  43. 43.  Awala H, Gilson J-P, Retoux R, Boullay P, Goupil J-M et al. 2015. Template-free nanosized faujasite-type zeolites. Nat. Mater. 14:447–51
    [Google Scholar]
  44. 44.  Lupulescu AI, Rimer JD 2014. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344:729–32
    [Google Scholar]
  45. 45.  Petkovich ND, Stein A 2013. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42:3721–39
    [Google Scholar]
  46. 46.  Fan W, Snyder MA, Kumar S, Lee P-S, Yoo WC et al. 2008. Hierarchical nanofabrication of micro-porous crystals with ordered mesoporosity. Nat. Mater. 7:984–91
    [Google Scholar]
  47. 47.  Liu D, Bhan A, Tsapatsis M, Al Hashimi S 2011. Catalytic behavior of Brønsted acid sites in MWW and MFI zeolites with dual meso- and microporosity. ACS Catal 1:7–17
    [Google Scholar]
  48. 48.  Rimer JD, Kumar M, Li R, Lupulescu AI, Oleksiak MD 2014. Tailoring the physicochemical properties of zeolite catalysts. Catal. Sci. Technol. 4:3762–71
    [Google Scholar]
  49. 49.  Olafson KN, Li R, Alamani BG, Rimer JD 2016. Engineering crystal modifiers: bridging classical and nonclassical crystallization. Chem. Mater. 28:8453–65
    [Google Scholar]
  50. 50.  Kumar M, Luo H, Román-Leshkov Y, Rimer JD 2015. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137:13007–17
    [Google Scholar]
  51. 51.  Lupulescu AI, Kumar M, Rimer JD 2013. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. J. Am. Chem. Soc. 135:6608–17
    [Google Scholar]
  52. 52.  Lupulescu AI, Rimer JD 2012. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angew. Chem. Int. Ed. 51:3345–49
    [Google Scholar]
  53. 53.  Jegatheeswaran S, Cheng C-M, Cheng C-H 2015. Effects of adding alcohols on ZSM-12 synthesis. Microporous Mesoporous Mater 201:24–34
    [Google Scholar]
  54. 54.  Jamil AK, Muraza O, Al-Amer AM 2015. The role of alcohols and diols as co-solvents in fabrication of TON zeolite. J. Ind. Eng. Chem. 29:112–19
    [Google Scholar]
  55. 55.  Sanhoob MA, Muraza O, Al-Mutairi EM, Ullah N 2015. Role of crystal growth modifiers in the synthesis of ZSM-12 zeolite. Adv. Powder Technol. 26:188–92
    [Google Scholar]
  56. 56.  Das R, Ghosh S, Kanti Naskar M 2015. Effect of secondary and tertiary alkylamines for the synthesis of zeolite L. Mater. Lett. 143:94–97
    [Google Scholar]
  57. 57.  Chawla A, Li R, Jain R, Clark RJ, Sutjianto JG et al. 2018. Cooperative effects of inorganic and organic structure-directing agents in ZSM-5 crystallization. Mol. Syst. Des. Eng. 3:159–170
    [Google Scholar]
  58. 58.  Shen Y, Le TT, Li R, Rimer JD 2018. Optimized synthesis of ZSM-11 catalysts using 1,8-diaminooctane as a structure-directing agent. ChemPhysChem 19:529–37
    [Google Scholar]
  59. 59.  Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R 2009. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:7261246–49
    [Google Scholar]
  60. 60.  Na K, Jo C, Kim J, Cho K, Jung J et al. 2011. Directing zeolite structures into hierarchically nanoporous architectures. Science 333:328–32
    [Google Scholar]
  61. 61.  Luo HY, Michaelis VK, Hodges S, Griffin RG, Román-Leshkov Y 2015. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem. Sci. 6:6320–24
    [Google Scholar]
  62. 62.  Chaikittisilp W, Suzuki Y, Mukti RR, Suzuki T, Sugita K et al. 2013. Formation of hierarchically organized zeolites by sequential intergrowth. Angew. Chem. Int. Ed. 52:3355–59
    [Google Scholar]
  63. 63.  Bonilla G, Díaz I, Tsapatsis M, Jeong H-K, Lee Y, Vlachos DG 2004. Zeolite (MFI) crystal morphology control using organic structure-directing agents. Chem. Mater. 16:5697–705
    [Google Scholar]
  64. 64.  Corma A, Fornes V, Pergher SB, Maesen TLM, Buglass JG 1998. Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–56
    [Google Scholar]
  65. 65.  Ogino I, Nigra MM, Hwang S-J, Ha J-M, Rea T et al. 2011. Delamination of layered zeolite precursors under mild conditions: synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation. J. Am. Chem. Soc. 133:3288–91
    [Google Scholar]
  66. 66.  Corma A, Fornés V, Martınez-Triguero J, Pergher SB 1999. Delaminated zeolites: combining the benefits of zeolites and mesoporous materials for catalytic uses. J. Catal. 186:57–63
    [Google Scholar]
  67. 67.  Varoon K, Zhang X, Elyassi B, Brewer DD, Gettel M et al. 2011. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334:72–75
    [Google Scholar]
  68. 68.  Jeon MY, Kim D, Kumar P, Lee PS, Rangnekar N et al. 2017. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543:690–94
    [Google Scholar]
  69. 69.  Long JR, Yaghi OM 2009. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38:1213–14
    [Google Scholar]
  70. 70.  Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT 2009. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38:1450–59
    [Google Scholar]
  71. 71.  Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM 2013. The chemistry and applications of metal-organic frameworks. Science 341:1230444
    [Google Scholar]
  72. 72.  Schlichte K, Kratzke T, Kaskel S 2004. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88
    [Google Scholar]
  73. 73.  Horike S, Dincă M, Tamaki K, Long JR 2008. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 130:5854–55
    [Google Scholar]
  74. 74.  Jiang J, Yaghi OM 2015. Brønsted acidity in metal–organic frameworks. Chem. Rev. 115:6966–97
    [Google Scholar]
  75. 75.  Gascon J, Aktay U, Hernandez-Alonso MD, van Klink GPM, Kapteijn F 2009. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 261:75–87
    [Google Scholar]
  76. 76.  Roberts JM, Fini BM, Sarjeant AA, Farha OK, Hupp JT, Scheidt KA 2012. Urea metal–organic frameworks as effective and size-selective hydrogen-bond catalysts. J. Am. Chem. Soc. 134:3334–37
    [Google Scholar]
  77. 77.  Park HD, Dincă M, Román-Leshkov Y 2017. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO)4-incorporated Cr-MIL-101. ACS Central Sci 3:444–48
    [Google Scholar]
  78. 78.  Lu G, Li SZ, Guo Z, Farha OK, Hauser BG et al. 2012. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4:310–16
    [Google Scholar]
  79. 79.  Dhakshinamoorthy A, Garcia H 2012. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 41:5262–84
    [Google Scholar]
  80. 80.  Lee CY, Farha OK, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT 2011. Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 133:15858–61
    [Google Scholar]
  81. 81.  Pham HQ, Mai T, Pham-Tran N-N, Kawazoe Y, Mizuseki H, Nguyen-Manh D 2014. Engineering of band gap in metal–organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. J. Phys. Chem. C 118:4567–77
    [Google Scholar]
  82. 82.  Moon HR, Lim DW, Suh MP 2013. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 42:1807–24
    [Google Scholar]
  83. 83.  Ma LQ, Abney C, Lin WB 2009. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 38:1248–56
    [Google Scholar]
  84. 84.  Lin W 2007. Metal-organic frameworks for asymmetric catalysis and chiral separations. MRS Bull 32:544–48
    [Google Scholar]
  85. 85.  Cohen SM 2012. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112:970–1000
    [Google Scholar]
  86. 86.  Liu Y, Xuan WM, Cui Y 2010. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 22:4112–35
    [Google Scholar]
  87. 87.  Nasalevich MA, van der Veen M, Kapteijn F, Gascon J 2014. Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm 16:4919–26
    [Google Scholar]
  88. 88.  Wang J-L, Wang C, Lin W 2012. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–40
    [Google Scholar]
  89. 89.  Wang SB, Wang XC 2015. Multifunctional metal-organic frameworks for photocatalysis. Small 11:3097–112
    [Google Scholar]
  90. 90.  Sholl DS, Lively RP 2015. Defects in metal-organic frameworks: Challenge or opportunity?. J. Phys. Chem. Lett. 6:3437–44
    [Google Scholar]
  91. 91.  Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H 2013. Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal. Sci. Technol. 3:2509–40
    [Google Scholar]
  92. 92.  Mondloch JE, Katz MJ, Isley WC, Ghosh P, Liao PL et al. 2015. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 14:512–16
    [Google Scholar]
  93. 93.  Zhang L, Roling LT, Wang X, Vara M, Chi M et al. 2015. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349:6246412–16
    [Google Scholar]
  94. 94.  Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y 2016. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352:974–78
    [Google Scholar]
  95. 95.  Weber RW, Fletcher JCQ, Möller KP, O'Connor CT 1996. The characterization and elimination of the external acidity of ZSM-5. Microporous Mater 7:15–25
    [Google Scholar]
  96. 96.  Ghorbanpour A, Gumidyala A, Grabow LC, Crossley SP, Rimer JD 2015. Epitaxial growth of ZSM-5@silicalite-1: a core–shell zeolite designed with passivated surface acidity. ACS Nano 9:4006–16
    [Google Scholar]
  97. 97.  Pirngruber GD, Laroche C, Maricar-Pichon M, Rouleau L, Bouizi Y, Valtchev V 2013. Core–shell zeolite composite with enhanced selectivity for the separation of branched paraffin isomers. Microporous Mesoporous Mater 169:212–17
    [Google Scholar]
  98. 98.  Jiang J, Yu J, Corma A 2010. Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew. Chem. Int. Ed. 49:3120–45
    [Google Scholar]
  99. 99.  Parlett CMA, Wilson K, Lee AF 2013. Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42:3876–93
    [Google Scholar]
  100. 100.  Valtchev V, Majano G, Mintova S, Pérez-Ramírez J 2013. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 42:263–90
    [Google Scholar]
  101. 101.  Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC 2008. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37:2530–42
    [Google Scholar]
  102. 102.  Holm MS, Taarning E, Egeblad K, Christensen CH 2011. Catalysis with hierarchical zeolites. Catal. Today 168:3–16
    [Google Scholar]
  103. 103.  Li K, Valla J, Garcia-Martinez J 2014. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem 6:146–66
    [Google Scholar]
  104. 104.  Chal R, Gérardin C, Bulut M, vanDonk S 2011. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem 3:67–81
    [Google Scholar]
  105. 105.  Janssen AH, Koster AJ, de Jong KP 2001. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y. Angew. Chem. Int. Ed. 40:1102–4
    [Google Scholar]
  106. 106.  Verboekend D, Pérez-Ramírez J 2011. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1:879–90
    [Google Scholar]
  107. 107.  Groen JC, Jansen JC, Moulijn JA, Pérez-Ramírez J 2004. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B 108:13062–65
    [Google Scholar]
  108. 108.  Serrano DP, Escola JM, Pizarro P 2013. Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev. 42:4004–35
    [Google Scholar]
  109. 109.  Sachse A, Grau-Atienza A, Jardim EO, Linares N, Thommes M, García-Martínez J 2017. Development of intracrystalline mesoporosity in zeolites through surfactant-templating. Cryst. Growth Des. 17:4289–305
    [Google Scholar]
  110. 110.  Sachse A, García-Martínez J 2017. Surfactant-templating of zeolites: from design to application. Chem. Mater. 29:3827–53
    [Google Scholar]
  111. 111.  Qin Z, Melinte G, Gilson JP, Jaber M, Bozhilov K et al. 2016. The mosaic structure of zeolite crystals. Angew. Chem. Int. Ed. 55:15049–52
    [Google Scholar]
  112. 112.  Jo D, Ryu T, Park GT, Kim PS, Kim CH et al. 2016. Synthesis of high-silica LTA and UFI zeolites and NH3–SCR performance of their copper-exchanged form. ACS Catal 6:2443–47
    [Google Scholar]
  113. 113.  Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H et al. 2016. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138:6028–48
    [Google Scholar]
  114. 114.  Guisnet M, Ribeiro FR 2011. Deactivation and Regeneration of Zeolite Catalysts London: Imp. Coll. Press340
  115. 115.  Kistler JD, Chotigkrai N, Xu P, Enderle B, Praserthdam P et al. 2014. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 53:8904–7
    [Google Scholar]
  116. 116.  Kletnieks PW, Liang AJ, Craciun R, Ehresmann JO, Marcus DM et al. 2007. Molecular heterogeneous catalysis: a single-site zeolite-supported rhodium complex for acetylene cyclotrimerization. Chemistry 13:7294–304
    [Google Scholar]
  117. 117.  Hoffman AS, Fang C-Y, Gates BC 2016. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7:3854–60
    [Google Scholar]
  118. 118.  Ehresmann JO, Kletnieks PW, Liang A, Bhirud VA, Bagatchenko OP et al. 2006. Evidence from NMR and EXAFS studies of a dynamically uniform mononuclear single-site zeolite-supported rhodium catalyst. Angew. Chem. Int. Ed. 45:574–76
    [Google Scholar]
  119. 119.  Gates BC, Flytzani-Stephanopoulos M, Dixon DA, Katz A 2017. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7:4259–75
    [Google Scholar]
  120. 120.  Goel S, Wu Z, Zones SI, Iglesia E 2012. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134:17688–95
    [Google Scholar]
  121. 121.  Wu Z, Goel S, Choi M, Iglesia E 2014. Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity. J. Catal. 311:458–68
    [Google Scholar]
  122. 122.  Choi M, Wu Z, Iglesia E 2010. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132:9129–37
    [Google Scholar]
  123. 123.  Goel S, Zones SI, Iglesia E 2014. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 136:15280–90
    [Google Scholar]
  124. 124.  Liu L, Díaz U, Arenal R, Agostini G, Concepción P, Corma A 2017. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16:132–38
    [Google Scholar]
  125. 125.  Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T et al. 2008. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem. Int. Ed. 47:4835–39
    [Google Scholar]
  126. 126.  Deem MW, Pophale R, Cheeseman PA, Earl DJ 2009. Computational discovery of new zeolite-like materials. J. Phys. Chem. C 113:21353–60
    [Google Scholar]
  127. 127.  Colon YJ, Snurr RQ 2014. High-throughput computational screening of metal-organic frameworks. Chem. Soc. Rev. 43:5735–49
    [Google Scholar]
  128. 128.  Pophale R, Daeyaert F, Deem MW 2013. Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J. Mater. Chem. A 1:6750–60
    [Google Scholar]
  129. 129.  Davis TM, Liu AT, Lew CM, Xie D, Benin AI et al. 2016. Computationally guided synthesis of SSZ-52: a zeolite for engine exhaust clean-up. Chem. Mater. 28:708–11
    [Google Scholar]
  130. 130.  Simancas R, Dari D, Velamazán N, Navarro MT, Cantín A et al. 2010. Modular organic structure-directing agents for the synthesis of zeolites. Science 330:1219–22
    [Google Scholar]
  131. 131.  Tong M, Zhang D, Fan W, Xu J, Zhu L et al. 2015. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route. Sci. Rep. 5:11521
    [Google Scholar]
  132. 132.  Brand SK, Schmidt JE, Deem MW, Daeyaert F, Ma Y et al. 2017. Enantiomerically enriched, polycrystalline molecular sieves. PNAS 114:5101–6
    [Google Scholar]
  133. 133.  Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR et al. 2013. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 5:628
    [Google Scholar]
  134. 134.  Mazur M, Wheatley PS, Navarro M, Roth WJ, Položij M et al. 2015. Synthesis of “unfeasible” zeolites.. Nat. Chem. 8:58–62
    [Google Scholar]
  135. 135.  Verheyen E, Joos L, Van Havenbergh K, Breynaert E, Kasian N et al. 2012. Design of zeolite by inverse sigma transformation. Nat. Mater. 11:1059–64
    [Google Scholar]
  136. 136.  Gallego EM, Portilla MT, Paris C, León-Escamilla A, Boronat M et al. 2017. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355:1051–54
    [Google Scholar]
  137. 137.  Jones AJ, Zones SI, Iglesia E 2014. Implications of transition state confinement within small voids for acid catalysis. J. Phys. Chem. C 118:17787–800
    [Google Scholar]
  138. 138.  Román-Leshkov Y, Moliner M, Davis ME 2011. Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites. J. Phys. Chem. C 115:1096–102
    [Google Scholar]
  139. 139.  Di Iorio JR, Gounder R 2016. Controlling the isolation and pairing of aluminum in chabazite zeolites using mixtures of organic and inorganic structure-directing agents. Chem. Mater. 28:2236–47
    [Google Scholar]
  140. 140.  Ghorbanpour A, Rimer JD, Grabow LC 2016. Computational assessment of the dominant factors governing the mechanism of methanol dehydration over H-ZSM-5 with heterogeneous aluminum distribution. ACS Catal 6:2287–98
    [Google Scholar]
  141. 141.  Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R 2018. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal 8:2770–84
    [Google Scholar]
  142. 142.  Gounder R, Iglesia E 2009. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. J. Am. Chem. Soc. 131:1958–71
    [Google Scholar]
  143. 143.  Jones AJ, Iglesia E 2015. The strength of Brønsted acid sites in microporous aluminosilicates. ACS Catal 5:5741–55
    [Google Scholar]
  144. 144.  Boronat M, Corma A 2015. Factors controlling the acidity of zeolites. Catal. Lett. 145:162–72
    [Google Scholar]
  145. 145.  De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S et al. 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:aaa6760
    [Google Scholar]
  146. 146.  Yu Y, Zhang Q, Liu B, Lee JY 2010. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J. Am. Chem. Soc. 132:18258–65
    [Google Scholar]
  147. 147.  Keoh SH, Chaikittisilp W, Muraoka K, Mukti RR, Shimojima A et al. 2016. Factors governing the formation of hierarchically and sequentially intergrown MFI zeolites by using simple diquaternary ammonium structure-directing agents. Chem. Mater. 28:8997–9007
    [Google Scholar]
  148. 148.  Hendon CH, Rieth AJ, Korzyński MD, Dincă M 2017. Grand challenges and future opportunities for metal–organic frameworks. ACS Central Sci 3:554–63
    [Google Scholar]
  149. 149.  Liu Y, Moon SY, Hupp JT, Farha OK 2015. Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants. ACS Nano 9:12358–64
    [Google Scholar]
  150. 150.  Garcia-Martinez J, Xiao C, Cychosz KA, Li K, Wan W et al. 2014. Evidence of intracrystalline mesostructured porosity in zeolites by advanced gas sorption, electron tomography and rotation electron diffraction. ChemCatChem 6:3110–15
    [Google Scholar]
  151. 151.  Garcia-Martinez J, Li K, Krishnaiah G 2012. A mesostructured Y zeolite as a superior FCC catalyst—from lab to refinery. Chem. Commun. 48:11841–43
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-083953
Loading
/content/journals/10.1146/annurev-chembioeng-060817-083953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error