当前位置: X-MOL 学术Rend. Fis. Acc. Lincei. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials.
Rendiconti Lincei. Scienze Fisiche e Naturali ( IF 1.810 ) Pub Date : 2015-03-05 , DOI: 10.1007/s12210-015-0396-3
Amy M Wen 1 , Rudolf Podgornik 2 , Giuseppe Strangi 3 , Nicole F Steinmetz 1
Affiliation  

Sizing and shaping of mesoscale architectures with nanoscale features is a key opportunity to produce the next generation of higher-performing products and at the same time unveil completely new phenomena. This review article discusses recent advances in the design of novel photonic and plasmonic structures using a biology-inspired design. The proteinaceous capsids from viruses have long been discovered as platform technologies enabling unique applications in nanotechnology, materials, bioengineering, and medicine. In the context of materials applications, the highly organized structures formed by viral capsid proteins provide a 3D scaffold for the precise placement of plasmon and gain materials. Based on their highly symmetrical structures, virus-based nanoparticles have a high propensity to self-assemble into higher-order crystalline structures, yielding hierarchical hybrid materials. Recent advances in the field have led to the development of virus-based light harvesting systems, plasmonic structures for application in high-performance metamaterials, binary nanoparticle lattices, and liquid crystalline arrays for sensing or display technologies. There is still much that could be explored in this area, and we foresee that this is only the beginning of great technological advances in virus-based materials for plasmonics and photonics applications.

中文翻译:

光子学和等离激元学变得流行:分层超材料的自组装。

具有纳米尺度特征的中尺度体系结构的大小调整和成形是生产下一代更高性能产品并同时揭示全新现象的重要机会。这篇综述文章讨论了利用生物学启发的设计在新型光子和等离子体结构设计方面的最新进展。病毒的蛋白质衣壳早已被发现为平台技术,可在纳米技术,材料,生物工程和医学中实现独特的应用。在材料应用方面,由病毒衣壳蛋白形成的高度组织化的结构提供了3D支架,用于精确放置等离激元和获得材料。基于病毒的纳米粒子具有高度对称的结构,因此很容易自组装成更高阶的晶体结构,产生分层的混合材料。该领域的最新进展导致了基于病毒的光收集系统,用于高性能超材料中的等离激元结构,二元纳米粒子晶格以及用于传感或显示技术的液晶阵列的开发。在这一领域仍有很多可以探索的地方,并且我们可以预见,这仅仅是用于等离子和光子应用的基于病毒的材料技术上巨大进步的开端。
更新日期:2015-03-05
down
wechat
bug