Skip to main content

Advertisement

Log in

Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials

  • Life, New Materials and Plasmonics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Sizing and shaping of mesoscale architectures with nanoscale features is a key opportunity to produce the next generation of higher-performing products and at the same time unveil completely new phenomena. This review article discusses recent advances in the design of novel photonic and plasmonic structures using a biology-inspired design. The proteinaceous capsids from viruses have long been discovered as platform technologies enabling unique applications in nanotechnology, materials, bioengineering, and medicine. In the context of materials applications, the highly organized structures formed by viral capsid proteins provide a 3D scaffold for the precise placement of plasmon and gain materials. Based on their highly symmetrical structures, virus-based nanoparticles have a high propensity to self-assemble into higher-order crystalline structures, yielding hierarchical hybrid materials. Recent advances in the field have led to the development of virus-based light harvesting systems, plasmonic structures for application in high-performance metamaterials, binary nanoparticle lattices, and liquid crystalline arrays for sensing or display technologies. There is still much that could be explored in this area, and we foresee that this is only the beginning of great technological advances in virus-based materials for plasmonics and photonics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams M, Fraden S (1998) Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin). Biophys J 74:669–677

    Article  CAS  Google Scholar 

  • Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33:183–192

    Article  CAS  Google Scholar 

  • Atabekov J, Nikitin N, Arkhipenko M, Chirkov S, Karpova O (2011) Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles. J Gen Virol 92:453–456

    Article  CAS  Google Scholar 

  • Bang J, Jeong U, du Ryu Y, Russell TP, Hawker CJ (2009) Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater 21:4769–4792

    Article  CAS  Google Scholar 

  • Bergamini G, Ceroni P, Fabbrizzi P, Cicchi S (2011) A multichromophoric dendrimer: from synthesis to energy up-conversion in a rigid matrix. Chem Commun (Camb) 47:12780–12782

    Article  CAS  Google Scholar 

  • Bernal JD, Fankuchen I (1941) X-ray and crystallographic studies of plant virus preparations : I. Introduction and preparation of specimens II. Modes of aggregation of the viruspParticles. J Gen Physiol 25:111–146

    Article  CAS  Google Scholar 

  • Bianchi E, Blaak R, Likos CN (2011) Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys 13:6397–6410

    Article  CAS  Google Scholar 

  • Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol-gel dip coating. Thin Solid Films 201:97–108

    Article  CAS  Google Scholar 

  • Brown WL, Mastico RA, Wu M, Heal KG, Adams CJ, Murray JB, Simpson JC, Lord JM, Taylor-Robinson AW, Stockley PG (2002) RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology 45:371–380

    Article  CAS  Google Scholar 

  • Bruckman MA, Soto CM, McDowell H, Liu JL, Ratna BR, Korpany KV, Zahr OK, Blum AS (2011) Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS Nano 5:1606–1616

    Article  CAS  Google Scholar 

  • Capehart SL, Coyle MP, Glasgow JE, Francis MB (2013) controlled integration of gold nanoparticles and organic fluorophores using synthetically modified MS2 viral capsids. J Am Chem Soc 135:3011–3016

    Article  CAS  Google Scholar 

  • Casselyn M, Perez J, Tardieu A, Vachette P, Witz J, Delacroix H (2001) Spherical plant viruses: interactions in solution, phase diagrams and crystallization of brome mosaic virus. Acta Crystallogr D Biol Crystallogr 57:1799–1812

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa W, Paine M, Ratna BR, Johnson JE, Lin T (2004) New addresses on an addressable virus nanoblock: uniquely reactive Lys residues on cowpea mosaic virus. Chem Biol 11:855–863

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa WF, Ueno T, Lin T, Johnson JE (2005) A virus-based nanoblock with tunable electrostatic properties. Nano Lett 5:597–602

    Article  CAS  Google Scholar 

  • Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee SW (2011) Biomimetic self-templating supramolecular structures. Nature 478:364–368

    Article  CAS  Google Scholar 

  • Comellas-Aragones M, Engelkamp H, Claessen VI, Sommerdijk NA, Rowan AE, Christianen PC, Maan JC, Verduin BJ, Cornelissen JJ, Nolte RJ (2007) A virus-based single-enzyme nanoreactor. Nat Nanotechnol 2:635–639

    Article  CAS  Google Scholar 

  • Craster RV, Guenneau S, eds. Acoustic metamaterials: negative refraction, imaging, lensing and cloaking. Springer series in materials science, ed. R. Hull, et al. vol 166. (2013), Springer, Dordrecht

  • De Luca A, Grzelczak MP, Pastoriza-Santos I, Liz-Marzan LM, La Deda M, Striccoli M, Strangi G (2011) Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses. ACS Nano 5:5823–5829

    Article  Google Scholar 

  • Doerr A (2011) DNA origami in 3D. Nat Methods 8:453

    Google Scholar 

  • Dogic Z, Fraden S (2006) Ordered phases of filamentous viruses. Curr Opin Colloid Interface Sci 11:47–55

    Article  CAS  Google Scholar 

  • Dogic Z, Frenkel D, Fraden S (2000) Enhanced stability of layered phases in parallel hard spherocylinders due to addition of hard spheres. Phys Rev E 62:3925

    Article  CAS  Google Scholar 

  • Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  • Endo M, Sugiyama H (2011) Recent progress in DNA origami technology. Curr Protoc Nucleic Acid Chem Chapter 12(Unit12):18

    Google Scholar 

  • Endo M, Fujitsuka M, Majima T (2007) Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold. Chemistry 13:8660–8666

    Article  CAS  Google Scholar 

  • Engheta N, Ziolkowski RW (2006) Metamaterials: Physics and Engineering Explorations. Wiley, New York

  • Ermolina I, Milner J, Morgan H (2006) Dielectrophoretic investigation of plant virus particles: cow pea mosaic virus and tobacco mosaic virus. Electrophoresis 27:3939–3948

    Article  CAS  Google Scholar 

  • Fontana J, Dressick WJ, Phelps J, Johnson JE, Rendell RW, Sampson T, Ratna BR, Soto CM (2014) Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly. Small 10:3058–3063

    Article  CAS  Google Scholar 

  • Fraenkel-Conrat H, Williams RC (1955) Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci USA 41:690–698

    Article  CAS  Google Scholar 

  • French RH, Parsegian VA, Podgornik R, Rajter RF, Jagota A, Luo J, Asthagiri D, Chaudhury MK, Y-m Chiang, Granick S, Kalinin S, Kardar M, Kjellander R, Langreth DC, Lewis J, Lustig S, Wesolowski D, Wettlaufer JS, Ching W-Y, Finnis M, Houlihan F, von Lilienfeld OA, van Oss CJ, Zemb T (2010) Long range interactions in nanoscale science. Rev Mod Phys 82:1887–1944

    Article  Google Scholar 

  • Furuta P, Brooks J, Thompson ME, Frechet JM (2003) Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: a model for single-layer multichromophoric organic light-emitting diodes. J Am Chem Soc 125:13165–13172

    Article  CAS  Google Scholar 

  • Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C (2013) TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5:3808–3816

    Article  CAS  Google Scholar 

  • Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed Engl 43:30–45

    Article  Google Scholar 

  • Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  • Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  CAS  Google Scholar 

  • Hess GT, Guimaraes CP, Spooner E, Ploegh HL, Belcher AM (2013) Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures. ACS Synth Biol 2:490–496

    Article  CAS  Google Scholar 

  • Hirai M, Koizumi M, Han R, Hayakawa T, Sano Y (2003) Right-/left-circular orientation of biological macromolecules under magnetic field gradient. J Appl Crystallogr 36:520–524

    Article  CAS  Google Scholar 

  • Johnson HR, Hooker JM, Francis MB, Clark DS (2007) Solubilization and stabilization of bacteriophage MS2 in organic solvents. Biotechnol Bioeng 97:224–234

    Article  CAS  Google Scholar 

  • Kostiainen MA, Hiekkataipale P, de la Torre JA, Nolte RJM, Cornelissen JJLM (2011) Electrostatic self-assembly of virus-polymer complexes. J Mater Chem 21:2112–2117

    Article  CAS  Google Scholar 

  • Kostiainen MA, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P (2013) Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat Nanotechnol 8:52–56

    Article  CAS  Google Scholar 

  • Leckband D, Israelachvili J (2001) Intermolecular forces in biology. Q Rev Biophys 34:105–267

    Article  CAS  Google Scholar 

  • Lee S-W, Belcher AM (2004) Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Lett 4:387–390

    Article  CAS  Google Scholar 

  • Lee S-W, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  CAS  Google Scholar 

  • Lee HE, Lee HK, Chang H, Ahn HY, Erdene N, Lee HY, Lee YS, Jeong DH, Chung J, Nam KT (2014) Virus templated gold nanocube chain for SERS nanoprobe. Small 10:3007–3011

    Article  CAS  Google Scholar 

  • Lekkerkerker HNW, Tuinier R (2011) Colloids and the depletion interaction. Lecture Notes in Physics 833

  • Lin C, Liu Y, Rinker S, Yan H (2006) DNA tile based self-assembly: building complex nanoarchitectures. Chem Phys Chem 7:1641–1647

    CAS  Google Scholar 

  • Liu W, Zhong H, Wang R, Seeman NC (2011) Crystalline two-dimensional DNA-origami arrays. Angew Chem Int Ed Engl 50:264–267

    Article  CAS  Google Scholar 

  • Lohmuller T, Aydin D, Schwieder M, Morhard C, Louban I, Pacholski C, Spatz JP (2011) Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6:MR1-12

  • Loo L, Guenther RH, Basnayake VR, Lommel SA, Franzen S (2006) Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128:4502–4503

    Article  CAS  Google Scholar 

  • Loo L, Guenther RH, Lommel SA, Franzen S (2007) Encapsidation of nanoparticles by red clover necrotic mosaic virus. J Am Chem Soc 129:11111–11117

    Article  CAS  Google Scholar 

  • Losdorfer Bozic A, Podgornik R (2013) Symmetry effects in electrostatic interactions between two arbitrarily charged spherical shells in the Debye-Huckel approximation. J Chem Phys 138:074902

    Article  Google Scholar 

  • Ma YZ, Miller RA, Fleming GR, Francis MB (2008) Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein. J Phys Chem B 112:6887–6892

    Article  CAS  Google Scholar 

  • Majumder U, Rangnekar A, Gothelf KV, Reif JH, LaBean TH (2011) Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J Am Chem Soc 133:3843–3845

    Article  CAS  Google Scholar 

  • Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503:209–217

    Article  CAS  Google Scholar 

  • Malloy M, Litt LC (2011) Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing. J Micro Nanolithogr MEMS MOEMS 10:032001–032013

    Article  Google Scholar 

  • Mikkilä J, Rosilo H, Nummelin S, Seitsonen J, Ruokolainen J, Kostiainen MA (2013) Janus-dendrimer-mediated formation of crystalline virus assemblies. ACS Macro Lett 2:720–724

    Article  Google Scholar 

  • Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109

    Article  CAS  Google Scholar 

  • Millman BM, Nickel BG (1980) Electrostatic forces in muscle and cylindrical gel systems. Biophys J 32:49–63

    Article  CAS  Google Scholar 

  • Millman BM, Irving TC, Nickel BG, Loosley-Millman ME (1984) Interrod forces in aqueous gels of tobacco mosaic virus. Biophys J 45:551–556

    Article  CAS  Google Scholar 

  • Miura Y, Momotake A, Takeuchi K, Arai T (2011) The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell. Photochem Photobiol Sci 10:116–122

    Article  CAS  Google Scholar 

  • Mueller A, Eber FJ, Azucena C, Petershans A, Bittner AM, Gliemann H, Jeske H, Wege C (2011) Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers. ACS Nano 5:4512–4520

    Article  CAS  Google Scholar 

  • Mukherjee S, Pfeifer CM, Johnson JM, Liu J, Zlotnick A (2006) Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. J Am Chem Soc 128:2538–2539

    Article  CAS  Google Scholar 

  • Mynar JL, Lowery TJ, Wemmer DE, Pines A, Frechet JM (2006) Xenon biosensor amplification via dendrimer-cage supramolecular constructs. J Am Chem Soc 128:6334–6335

    Article  CAS  Google Scholar 

  • Naik GV, Boltasseva A (2011) A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 5:1–7

    Article  CAS  Google Scholar 

  • Nantalaksakul A, Dasari RR, Ahn TS, Al-Kaysi R, Bardeen CJ, Thayumanavan S (2006) Dendrimer analogues of linear molecules to evaluate energy and charge-transfer properties. Org Lett 8:2981–2984

    Article  CAS  Google Scholar 

  • Natarajan P, Johnson JE (1998) Molecular packing in virus crystals: geometry, chemistry, and biology. J Struct Biol 121:295–305

    Article  CAS  Google Scholar 

  • Niu Z, Bruckman MA, Li S, Lee LA, Lee B, Pingali SV, Thiyagarajan P, Wang Q (2007) Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization. Langmuir 23:6719–6724

    Article  CAS  Google Scholar 

  • Oh JW, Chung WJ, Heo K, Jin HE, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee SY, Kim WG, Zemla M, Auer M, Hexemer A, Lee SW (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5:3043

    Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Onsager L (1969) The motion of ions: principles and concepts. Science 166:1359–1364

    Article  CAS  Google Scholar 

  • Oster G (1950) Two-phase formation in solutions of tobacco mosaic virus and the problem of long-range forces. J Gen Physiol 33:445–473

    Article  CAS  Google Scholar 

  • Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed Engl 45:735–739

    Article  CAS  Google Scholar 

  • Pimpin A, Srituravanich W (2012) Review on micro- and nanolithography techniques and their applications. Eng J 16. doi:10.4186/ej.2012.4116.4181.4137

  • Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8:29–43

    Article  CAS  Google Scholar 

  • Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  CAS  Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2012) DNA origami: synthesis and self-assembly. Curr Protoc Nucleic Acid Chem Chapter 12:Unit 12 19 11–18

  • Romano F, Sciortino F (2011) Colloidal self-assembly: patchy from the bottom up. Nat Mater 10:171–173

    Article  CAS  Google Scholar 

  • Royston E, Ghosh A, Kofinas P, Harris MT, Culver JN (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24:906–912

    Article  CAS  Google Scholar 

  • Sacca B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed Engl 51:58–66

    Article  CAS  Google Scholar 

  • Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2:145–155

    Article  CAS  Google Scholar 

  • Serin JM, Brousmiche DW, Frechet JM (2002) Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem Commun (Camb) 2605–2607

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  • Shih WM, Lin C (2010) Knitting complex weaves with DNA origami. Curr Opin Struct Biol 20:276–282

    Article  CAS  Google Scholar 

  • Shukla S, Dickmeis C, Nagarajan AS, Fischer R, Commandeur U, Steinmetz NF (2014) Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models. Biomater Sci 2:784–797

    Article  CAS  Google Scholar 

  • Siber A, Bozic AL, Podgornik R (2012) Energies and pressures in viruses: contribution of nonspecific electrostatic interactions. Phys Chem Chem Phys 14:3746–3765

    Article  CAS  Google Scholar 

  • Šiber A, Zandi R, Podgornik R (2010) Thermodynamics of nanospheres encapsulated in virus capsids. Phys Rev E 81:051919

    Article  Google Scholar 

  • Sihvola A (2007) Metamaterials in electromagnetics. Metamaterials 1:2–11

    Article  Google Scholar 

  • Sreekanth KV, De Luca A, Strangi G (2013) Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci Rep 3:3291

    Article  Google Scholar 

  • Sreekanth KV, Krishna KH, De Luca A, Strangi G (2014) Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci Rep 4:6340

    Article  CAS  Google Scholar 

  • Stevens MM, Flynn NT, Wang C, Tirrell DA, Langer R (2004) Coiled-coil peptide-based assembly of gold nanoparticles. Adv Mater 16:915–918

    Article  CAS  Google Scholar 

  • Strangi G, De Luca A, Ravaine S, Ferrie M, Bartolino R (2011) Gain induced optical transparency in metamaterials. Appl Phys Lett 98:251912

    Article  Google Scholar 

  • Sun J, DuFort C, Daniel MC, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello VM, Holzenburg A, Kao CC, Dragnea B (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci USA 104:1354–1359

    Article  CAS  Google Scholar 

  • Vega-Acosta JR, Cadena-Nava RD, Gelbart WM, Knobler CM, Ruiz-Garcia J (2014) Electrophoretic mobilities of a viral capsid, its capsid protein, and their relation to viral assembly. J Phys Chem B 118:1984–1989

    CAS  Google Scholar 

  • Wagner SC, Roskamp M, Pallerla M, Araghi RR, Schlecht S, Koksch B (2010) Nanoparticle-induced folding and fibril formation of coiled-coil-based model peptides. Small 6:1321–1328

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Johnson JE, Finn MG (2002) Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819

    Article  CAS  Google Scholar 

  • Wang D, Capehart SL, Pal S, Liu M, Zhang L, Schuck PJ, Liu Y, Yan H, Francis MB, De Yoreo JJ (2014) Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates. ACS Nano 8:7896–7904

    Article  CAS  Google Scholar 

  • Wen AM, Steinmetz NF (2014) The aspect ratio of nanoparticle assemblies and the spatial arrangement of ligands can be optimized to enhance the targeting of cancer cells. Adv Healthc Mater 3:1739–1744

    Article  CAS  Google Scholar 

  • Wen AM, Rambhia PH, French RH, Steinmetz NF (2013) Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 39:301–325

    Article  CAS  Google Scholar 

  • Wen AM, Infusino M, De Luca A, Kernan DL, Czapar AE, Strangi G, Steinmetz NF (2015) Interface of Physics and Biology: engineering Virus-Based Nanoparticles for Biophotonics. Bioconjug Chem. doi:10.1021/bc500524f

    Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  • Wu M, Brown WL, Stockley PG (1995) Cell-specific delivery of bacteriophage-encapsidated ricin A chain. Bioconjug Chem 6:587–595

    Article  CAS  Google Scholar 

  • Yang SH, Chung WJ, McFarland S, Lee SW (2013) Assembly of bacteriophage into functional materials. Chem Rec 13:43–59

    Article  Google Scholar 

  • Yun JM, Kim KN, Kim JY, Shin DO, Lee WJ, Lee SH, Lieberman M, Kim SO (2012) DNA origami nanopatterning on chemically modified graphene. Angew Chem Int Ed Engl 51:912–915

    Article  CAS  Google Scholar 

  • Zhao Y, Thorkelsson K, Mastroianni AJ, Schilling T, Luther JM, Rancatore BJ, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Frechet JM, Alivisatos AP, Xu T (2009) Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat Mater 8:979–985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in parts by a grant from the National Science Foundation (NSF CMMI 1333651 to N. F. S) for support in the study of nanomanufacturing of virus-based materials, and a grant from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0008176 and DE- SC0008068 (to N. F. S and R. P.) for support in the study of long-range interactions for biomolecular and inorganic nanoscale assembly. A. M. W. acknowledges support from the NIH T32 HL105338 Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole F. Steinmetz.

Additional information

This contribution is the written, peer-reviewed version of a paper presented in one of the two conferences “From Life to Life: Through New Materials and Plasmonics”, Accademia Nazionale dei Lincei in Rome on June 23, 2014, and at “NanoPlasm 2014: New Frontiers in Plasmonics and NanoOptics”, Cetraro (CS) on June 16–20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, A.M., Podgornik, R., Strangi, G. et al. Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials. Rend. Fis. Acc. Lincei 26 (Suppl 2), 129–141 (2015). https://doi.org/10.1007/s12210-015-0396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0396-3

Keywords

Navigation