当前位置: X-MOL 学术WIREs Comput. Mol. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale simulation on thermal stability of supported metal nanocatalysts
Wiley Interdisciplinary Reviews: Computational Molecular Science ( IF 16.8 ) Pub Date : 2019-01-25 , DOI: 10.1002/wcms.1405
Shengwei Deng 1 , Chenglong Qiu 1 , Zihao Yao 1 , Xiang Sun 1 , Zhongzhe Wei 1 , Guilin Zhuang 1 , Xing Zhong 1 , Jian‐guo Wang 1
Affiliation  

Supported metal nanocatalysts offer a wide range of promising applications because of their many enhanced catalytic properties arising from highly active species dispersed onto a high surface area support. Developing a deep understanding of thermal stability is of great importance to avoid irreversible catalyst deactivation. It is generally acknowledged that many factors including the chemical composition, morphology, support material, metal–support interaction, reaction condition and environment have significant impacts on the thermal stability. The rapid developments of computational capacity and advanced simulation techniques allow one to correlate the structure–property relationships at the atomic level. In this review, the widely used simulation methods and computational strategies on supported metal nanocatalysts will be briefly introduced. Next, we will summarize the theoretical models of structure evolution of nanoparticles and describe the calculation of metal–support interaction, accompanying with intra‐ and inter‐particle sintering process in the vacuum or reaction environments, and then give perspectives on the future directions towards better utilization of various simulation techniques.

中文翻译:

负载金属纳米催化剂热稳定性的多尺度模拟

负载型金属纳米催化剂由于分散在高表面积载体上的高活性物种而具有许多增强的催化性能,因此具有广阔的应用前景。深入了解热稳定性对于避免不可逆的催化剂失活至关重要。人们普遍认为,包括化学成分,形态,载体材料,金属与载体相互作用,反应条件和环境在内的许多因素都对热稳定性产生重大影响。计算能力的迅速发展和先进的模拟技术使人们能够在原子水平上关联结构与性质之间的关系。在这篇综述中,将简要介绍负载型金属纳米催化剂上广泛使用的模拟方法和计算策略。
更新日期:2019-01-25
down
wechat
bug