当前位置: X-MOL 学术Ann. Review Paleopathol. Mech. Disease › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pathophysiology of Sickle Cell Disease.
Annual Review of Pathology: Mechanisms of Disease ( IF 36.2 ) Pub Date : 2018-10-17 , DOI: 10.1146/annurev-pathmechdis-012418-012838
Prithu Sundd 1, 2, 3 , Mark T Gladwin 1, 2, 3 , Enrico M Novelli 2, 3, 4
Affiliation  

Since the discovery of sickle cell disease (SCD) in 1910, enormous strides have been made in the elucidation of the pathogenesis of its protean complications, which has inspired recent advances in targeted molecular therapies. In SCD, a single amino acid substitution in the β-globin chain leads to polymerization of mutant hemoglobin S, impairing erythrocyte rheology and survival. Clinically, erythrocyte abnormalities in SCD manifest in hemolytic anemia and cycles of microvascular vaso-occlusion leading to end-organ ischemia-reperfusion injury and infarction. Vaso-occlusive events and intravascular hemolysis promote inflammation and redox instability that lead to progressive small- and large-vessel vasculopathy. Based on current evidence, the pathobiology of SCD is considered to be a vicious cycle of four major processes, all the subject of active study and novel therapeutic targeting: ( a) hemoglobin S polymerization, ( b) impaired biorheology and increased adhesion-mediated vaso-occlusion, ( c) hemolysis-mediated endothelial dysfunction, and ( d) concerted activation of sterile inflammation (Toll-like receptor 4- and inflammasome-dependent innate immune pathways). These molecular, cellular, and biophysical processes synergize to promote acute and chronic pain and end-organ injury and failure in SCD. This review provides an exhaustive overview of the current understanding of the molecular pathophysiology of SCD, how this pathophysiology contributes to complications of the central nervous and cardiopulmonary systems, and how this knowledge is being harnessed to develop current and potential therapies.

中文翻译:

镰状细胞病的病理生理学。

自1910年发现镰状细胞病(SCD)以来,在阐明其蛋白并发症的发病机理方面已取得了长足的进步,这激发了靶向分子疗法的最新进展。在SCD中,β-珠蛋白链中的单个氨基酸取代会导致突变型血红蛋白S聚合,从而损害红细胞流变性和存活率。在临床上,SCD中的红细胞异常表现在溶血性贫血和微血管血管闭塞的循环中,导致终末器官缺血再灌注损伤和梗塞。血管闭塞事件和血管内溶血促进炎症和氧化还原不稳定,导致进行性小血管和大血管病变。根据目前的证据,SCD的病理生物学被认为是四个主要过程的恶性循环,积极研究和新型靶向治疗的所有主题:(a)血红蛋白S聚合,(b)血液流变学受损和粘附介导的血管闭塞增加,(c)溶血介导的内皮功能障碍,和(d)协同激活无菌炎症(Toll样受体4和依赖于炎症小体的先天免疫途径)。这些分子,细胞和生物物理过程协同作用,以促进急性和慢性疼痛以及终末器官损伤和SCD衰竭。这篇综述详尽地概述了对SCD分子病理生理学的当前理解,这种病理生理学如何导致中枢神经和心肺系统并发症,以及如何利用这些知识来开发当前和潜在的疗法。(a)血红蛋白S聚合,(b)损伤的流变学和增加的黏附介导的血管闭塞,(c)溶血介导的内皮功能障碍,(d)协同激活无菌炎症(Toll样受体4和炎症小体依赖性)先天免疫途径)。这些分子,细胞和生物物理过程协同作用,以促进急性和慢性疼痛以及终末器官损伤和SCD衰竭。这篇综述详尽地概述了对SCD分子病理生理学的当前理解,这种病理生理学如何导致中枢神经和心肺系统并发症,以及如何利用这些知识来开发当前和潜在的疗法。(a)血红蛋白S聚合,(b)损伤的流变学和增加的黏附介导的血管闭塞,(c)溶血介导的内皮功能障碍,(d)协同激活无菌炎症(Toll样受体4和炎症小体依赖性)先天免疫途径)。这些分子,细胞和生物物理过程协同作用,以促进急性和慢性疼痛以及终末器官损伤和SCD衰竭。这篇综述详尽地概述了对SCD分子病理生理学的当前理解,这种病理生理学如何导致中枢神经和心肺系统并发症,以及如何利用这些知识来开发当前和潜在的疗法。(d)协同激活无菌炎症(Toll样受体4和依赖于炎症小体的先天免疫途径)。这些分子,细胞和生物物理过程协同作用,以促进急性和慢性疼痛以及终末器官损伤和SCD衰竭。这篇综述详尽地概述了对SCD分子病理生理学的当前理解,这种病理生理学如何导致中枢神经和心肺系统并发症,以及如何利用这些知识来开发当前和潜在的疗法。(d)协同激活无菌炎症(Toll样受体4和依赖于炎症小体的先天免疫途径)。这些分子,细胞和生物物理过程协同作用,以促进急性和慢性疼痛以及终末器官损伤和SCD衰竭。这篇综述详尽地概述了对SCD分子病理生理学的当前理解,这种病理生理学如何导致中枢神经和心肺系统并发症,以及如何利用这些知识来开发当前和潜在的疗法。
更新日期:2019-01-24
down
wechat
bug