当前位置: X-MOL 学术Fungal Biol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrile metabolism in fungi: A review of its key enzymes nitrilases with focus on their biotechnological impact
Fungal Biology Reviews ( IF 6 ) Pub Date : 2019-01-14 , DOI: 10.1016/j.fbr.2018.11.002
Ludmila Martínková

Nitriles are abundant in the plant kingdom. The ability to detoxify them is beneficial for microbes living in the plant environment. Nitrilases (NLases; EC 3.5.5.-), which hydrolyze nitriles to carboxylic acids, have been well characterized in bacteria, and classified into various substrate-specificity subtypes (aromatic NLases, aliphatic NLases, arylacetoNLases). NLases also occur in filamentous fungi, mainly in Ascomycota (subdivision Pezizomycotina), as documented by genome mining. However, the investigation of NLases in fungi has been delayed compared to bacteria. Only a few NLases (aromatic NLases) were purified from native fungal strains (mainly Fusarium), which were grown under suitable induction conditions. Over a few past years, the spectrum of known fungal NLases was broadened by expressing fungal NLase genes in Escherichia coli. Thus functional NLases were reported for the first time in fungi of genera Auricularia, Macrophomina, Nectria, Neurospora, Pichia, Talaromyces, Trichoderma and Trichophyton. Two major substrate-specificity subtypes were identified in them, i.e. aromatic NLases and arylacetoNLases, apart from a few NLases with broad substrate specificities. The biotechnological impact of fungal arylacetoNLases was explored with a focus on the enantioselective hydrolysis of (R,S)-mandelonitrile, the selective hydrolysis of one cyano group in dinitriles and the hydrolysis of nitrile precursors of the taxol sidechain. Despite recent advances, the wealth of fungal NLases whose sequences have been deposited in databases has not yet been fully exploited. Overproduction in E. coli has the potential to bring these NLases to life. This will enable to estimate the natural roles of NLases in fungi and will also provide new catalysts for biotechnological uses.



中文翻译:

真菌中的腈代谢:其关键酶腈水解酶的综述,重点在于其生物技术影响

植物界中的腈含量很高。排毒的能力对生活在植物环境中的微生物有益。将腈水解为羧酸的腈水解酶(NLases; EC 3.5.5.-)已在细菌中得到了很好的表征,并被分为多种底物特异性亚型(芳香族NLase,脂族NLase,芳基乙酰化NLase)。NLases也存在于丝状真菌中,主要存在于子囊菌(细分为Pezizomycotina)中,这已通过基因组挖掘得到证明。但是,与细菌相比,真菌中NLase的研究已被推迟。从天然真菌菌株(主要是镰刀菌)中仅纯化了少数NLase(芳香族NLase)),在合适的诱导条件下生长。在过去的几年中,通过在大肠杆菌中表达真菌NLase基因,拓宽了已知的真菌NLase的谱。因此官能NLases报告了在属的真菌首次MacrophominaNectria脉孢菌属巴斯德毕赤踝节菌属木霉属。在其中鉴定了两种主要的底物特异性亚型,即芳香族NLase和芳基乙酰NLase,以及少数具有广泛底物特异性的NLase。探索了真菌芳基乙酰NLases的生物技术影响,重点是对映体选择性水解(RS)-扁桃腈,二腈中一个氰基的选择性水解以及紫杉醇侧链腈前体的水解。尽管有最近的进展,但其序列已保存在数据库中的大量真菌NLase尚未得到充分利用。E中的生产过剩。大肠杆菌有潜力使这些NLase栩栩如生。这将有助于估计NLase在真菌中的天然作用,还将为生物技术用途提供新的催化剂。

更新日期:2019-01-14
down
wechat
bug