当前位置: X-MOL 学术ACS Earth Space Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phosphate Uptake by Cyanobacteria Is Associated with Kinetic Fractionation of Phosphate Oxygen Isotopes
ACS Earth and Space Chemistry ( IF 2.9 ) Pub Date : 2018-12-27 00:00:00 , DOI: 10.1021/acsearthspacechem.8b00099
Hagar Lis 1 , Tal Weiner 1 , Frances D. Pitt 2 , Nir Keren 3 , Alon Angert 1
Affiliation  

The oxygen isotope ratio within phosphate (δ18OP) is an emerging powerful tool capable of providing valuable information on phosphorus (P) biogeochemistry. Microorganisms play a central role in phosphorus cycling in the environment, and microbial activity may result in both equilibrium and kinetic fractionation of phosphate oxygen isotopes. In the present paper, we focus on kinetic fractionation induced by microbial phosphorus uptake. This type of fractionation may result in nonequilibrium δ18OP values observed in some marine, freshwater, and terrestrial settings. We worked with the model cyanobacterium, Synechocystis PCC6803, which has two pst (phosphate specific transporter) type phosphate (PO4) transporters, each characterized by a different affinity for PO4. We found that PO4 uptake by Synechocystis in the P-uptake experiments induced fractionation when cells were P-limited. Moreover, under these conditions, Synechocystis preferentially took up the isotopically lighter P16O4. This resulted in a PO4–water oxygen isotope fractionation factor of −3.33 permil, similar to the value previously reported for Escherichia coli. Results from PO4 transporter mutants show that high affinity, and not low affinity, pst’s were responsible for this fractionation. On the basis of our results, we suggest that the degree of kinetic fractionation induced by biological uptake is dependent on the type of transporter involved in the uptake process.

中文翻译:

蓝藻对磷的吸收与磷氧同位素的动力学分级有关

磷酸盐中的氧同位素比率(δ 18 ö P)能够提供对磷(P)的生物地球化学有价值的信息的一个新兴的强有力的工具。微生物在环境中的磷循环中起着核心作用,微生物活性可能导致磷酸氧同位素的平衡和动力学分级。在本文中,我们专注于微生物对磷的吸收引起的动力学分级分离。这种类型的分馏可导致非平衡δ 18 ö P在一些海洋,淡水观测值,和地面设置。我们使用了蓝藻模型Synechocystis PCC6803,该模型具有两个pst(磷酸盐特异性转运蛋白)型磷酸盐(PO4)转运蛋白,每个转运蛋白的特征在于对PO 4的不同亲和力。我们发现,当细胞受到P限制时,P摄取实验中集胞藻对PO 4的摄取诱导了分级分离。此外,在这些条件下,集囊藻优先吸收同位素较轻的P 16 O 4。这样得出的PO 4-水氧同位素分馏系数为-3.33 permil,类似于先前报道的大肠杆菌值。PO 4的结果转运突变体表明,高亲和力而不是低亲和力是造成这种分级分离的原因。根据我们的结果,我们建议由生物摄取诱导的动力学分级分离的程度取决于参与摄取过程的转运蛋白的类型。
更新日期:2018-12-27
down
wechat
bug