当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pre-mission InSights on the Interior of Mars
Space Science Reviews ( IF 9.1 ) Pub Date : 2018-12-17 , DOI: 10.1007/s11214-018-0563-9
Suzanne E. Smrekar , Philippe Lognonné , Tilman Spohn , W. Bruce Banerdt , Doris Breuer , Ulrich Christensen , Véronique Dehant , Mélanie Drilleau , William Folkner , Nobuaki Fuji , Raphael F. Garcia , Domenico Giardini , Matthew Golombek , Matthias Grott , Tamara Gudkova , Catherine Johnson , Amir Khan , Benoit Langlais , Anna Mittelholz , Antoine Mocquet , Robert Myhill , Mark Panning , Clément Perrin , Tom Pike , Ana-Catalina Plesa , Attilio Rivoldini , Henri Samuel , Simon C. Stähler , Martin van Driel , Tim Van Hoolst , Olivier Verhoeven , Renee Weber , Mark Wieczorek

The Interior exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will focus on Mars’ interior structure and evolution. The basic structure of crust, mantle, and core form soon after accretion. Understanding the early differentiation process on Mars and how it relates to bulk composition is key to improving our understanding of this process on rocky bodies in our solar system, as well as in other solar systems. Current knowledge of differentiation derives largely from the layers observed via seismology on the Moon. However, the Moon’s much smaller diameter make it a poor analog with respect to interior pressure and phase changes. In this paper we review the current knowledge of the thickness of the crust, the diameter and state of the core, seismic attenuation, heat flow, and interior composition. InSight will conduct the first seismic and heat flow measurements of Mars, as well as more precise geodesy. These data reduce uncertainty in crustal thickness, core size and state, heat flow, seismic activity and meteorite impact rates by a factor of 3–10×$3\mbox{--}10\times$ relative to previous estimates. Based on modeling of seismic wave propagation, we can further constrain interior temperature, composition, and the location of phase changes. By combining heat flow and a well constrained value of crustal thickness, we can estimate the distribution of heat producing elements between the crust and mantle. All of these quantities are key inputs to models of interior convection and thermal evolution that predict the processes that control subsurface temperature, rates of volcanism, plume distribution and stability, and convective state. Collectively these factors offer strong controls on the overall evolution of the geology and habitability of Mars.

中文翻译:

对火星内部的任务前洞察

使用地震调查、大地测量和热传输 (InSight) 任务的内部探索将侧重于火星的内部结构和演化。地壳、地幔和地核的基本结构在吸积后不久就形成了。了解火星上的早期分化过程及其与整体成分的关系,是提高我们对太阳系以及其他太阳系中岩石天体这一过程的理解的关键。目前关于分化的知识主要来自通过月球地震学观察到的层。然而,月球的小得多的直径使它在内部压力和相位变化方面的模拟效果不佳。在本文中,我们回顾了目前关于地壳厚度、地核的直径和状态、地震衰减、热流和内部成分的知识。InSight 将对火星进行首次地震和热流测量,以及更精确的大地测量。相对于先前的估计,这些数据将地壳厚度、核心尺寸和状态、热流、地震活动和陨石撞击率的不确定性降低了 3–10×$3\mbox{--}10\times$。基于地震波传播的建模,我们可以进一步约束内部温度、成分和相变的位置。通过结合热流和地壳厚度的良好约束值,我们可以估计地壳和地幔之间产热元素的分布。所有这些量都是内部对流和热演化模型的关键输入,这些模型预测控制地下温度、火山活动速率、羽流分布和稳定性以及对流状态的过程。
更新日期:2018-12-17
down
wechat
bug