当前位置: X-MOL 学术ACS Cent. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring Surface Opening of Hollow Nanocubes and Their Application as Nanocargo Carriers
ACS Central Science ( IF 12.7 ) Pub Date : 2018-12-12 00:00:00 , DOI: 10.1021/acscentsci.8b00778
Fang Lu 1 , Huolin Xin 1 , Weiwei Xia 1 , Mingzhao Liu 1 , Yugang Zhang 2 , Weiping Cai 3, 4 , Oleg Gang 1, 5, 6
Affiliation  

Hollow nanoparticles (NPs) are of broad interest for biomedical, optical, and catalytic applications due to their unique geometry-related physicochemical properties. The ability to engineer hollow structures with surface openings is particularly attractive since emergent properties are promised by the design of shell porosity and encapsulation of guest materials. However, it still remains challenging to precisely control the opening of the hollow structure, in terms of shape, size, and location. Here, we report a facile one-step strategy to synthesize a hollow nanostructure with well-defined cubic-shape openings at the corners, by regulating nanoscale galvanic replacement processes with specific surface-capping agents. The final product is a single-crystalline AuAg alloy which morphologically features three “belts” orthogonally wrapping around a virtual cube, denoted by nanowrapper. We demonstrate a structural tunability of our synthetic method for tailoring nanowrapper and the corresponding tuning of its plasmonic band from the visible to near-infrared (NIR) range. Advanced electron tomography techniques provide unambiguous three-dimensional (3D) visualizations to reveal an unconventional transformation pathway of sharp-cornered Ag nanocube to nanowrapper and correlate its structure with measured and computed spectroscopic properties. Importantly, we find that the surfactant, i.e., cetylpyridinium chloride (CPC), is crucial for the openings to be localized at the corners of the hollow cube and be tailored to a cubic shape in our one-step process. Furthermore, such a well-defined hollow architecture also allows a guest nano-object to be contained within, while the large openings at corners enable controlled loading/release of nanoscale cargo, a DNA-coated particle, using change of ionic conditions. This work expands our understanding of surface engineering in nanoscale galvanic replacement reactions and opens new ways toward the shape control of hollow NPs.

中文翻译:

量身定制的空心纳米立方体的表面开口及其在纳米载体中的应用

空心纳米颗粒(NPs)由于其独特的与几何相关的物理化学性质,因此在生物医学,光学和催化应用中受到广泛关注。设计具有表面开口的中空结构的能力特别吸引人,因为通过壳的孔隙率设计和客体材料的包封可以保证其出众的性能。然而,就形状,尺寸和位置而言,精确地控制中空结构的开口仍然具有挑战性。在这里,我们报告了一个简单的步骤通过用特定的表面封端剂调节纳米尺度的电置换过程来合成在角上具有明确定义的立方形状开口的空心纳米结构的策略。最终产品是单晶AuAg合金,其形态上具有三个“带”,它们围绕一个虚拟立方体正交包裹,用纳米包裹剂表示。我们证明了我们用于合成纳米包装材料的合成方法的结构可调谐性,以及其等离子波带从可见光到近红外(NIR)范围的相应调谐。先进的电子断层扫描技术可提供清晰的三维(3D)可视化效果,以揭示尖角Ag纳米立方体到纳米包裹体的非常规转化途径,并将其结构与测量和计算的光谱性质相关联。重要的是,我们发现表面活性剂,即十六烷基氯化吡啶鎓(CPC),对于将孔定位在空心立方体的角部并在我们的一步式方法中定制为立方形状至关重要。此外,这种定义明确的空心结构还允许将客体纳米对象包含在其中,而角落处的大开口则可以通过改变离子条件来控制纳米级货物(DNA包裹的颗粒)的装载/释放。这项工作扩大了我们对纳米级电置换反应中表面工程的理解,并为控制中空NP的形状开辟了新途径。
更新日期:2018-12-12
down
wechat
bug