当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects analysis on the gasification kinetic characteristics of food waste in supercritical water
Fuel ( IF 6.7 ) Pub Date : 2019-04-01 , DOI: 10.1016/j.fuel.2018.12.012
Jingwei Chen , Yi Fan , Jiaqiang E , Wen Cao , Feng Zhang , Jinke Gong , Guanlin Liu , Wenwen Xu

Abstract The gasification kinetic characteristics of food waste (FW) gasification by supercritical water (SCW) were investigated by examining the SCW gasification (SCWG) of FW in a quartz tube reactor, and the experimental results were investigated by using a series of kinetic models. The experimental results show that the carbon gasification efficiency increases with reaction temperature at the same residence time, and reactivity increases sharply at the early stage of gasification and then decreases with reaction time. The simulation results show that all the classical kinetic models underestimate the experimental results, similar to the models used in previous work on coal gasification by SCW. The underestimation of the models results from the catalytic effect of alkaline earth metals (AAEMs), which can notably increase the active sites of gasification reaction without changing the gasification kinetic mechanism. To solve the above problem, the catalytical effect to describe the kinetic behavior of the SCWG of FW is considered and a semiempirical modified random pore model (MRPM) is developed based on the RPM model. The simulation results of the MRP models are close to experimental findings, indicating that MRP model can be used to predict the entire process of SCWG under different conditions without dividing gasification into different stages of reaction. The MRP model can also be used for the prediction of SCWG of coal, biomass, and organic wastes and is crucial to reactor optimization and scaling up.

中文翻译:

超临界水中餐厨垃圾气化动力学特性的影响分析

摘要 通过在石英管反应器中检测食物垃圾的超临界水气化(SCW),研究了食物垃圾(FW)气化的气化动力学特性,并利用一系列动力学模型研究了实验结果。实验结果表明,在相同停留时间下,碳气化效率随着反应温度的升高而增加,反应活性在气化初期急剧增加,然后随着反应时间的延长而降低。模拟结果表明,所有经典动力学模型都低估了实验结果,类似于之前 SCW 煤气化工作中使用的模型。模型的低估是由于碱土金属 (AAEM) 的催化作用造成的,在不改变气化动力学机理的情况下,可以显着增加气化反应的活性位点。为了解决上述问题,考虑了描述FW SCWG动力学行为的催化效应,并在RPM模型的基础上建立了半经验修正随机孔模型(MRPM)。MRP模型的模拟结果与实验结果接近,表明MRP模型可用于预测不同条件下SCWG的整个过程,而无需将气化划分为不同的反应阶段。MRP 模型还可用于预测煤、生物质和有机废物的 SCWG,对反应器优化和放大至关重要。考虑了描述 FW 的 SCWG 动力学行为的催化效应,并基于 RPM 模型开发了半经验修正随机孔模型 (MRPM)。MRP模型的模拟结果与实验结果接近,表明MRP模型可用于预测不同条件下SCWG的整个过程,而无需将气化划分为不同的反应阶段。MRP 模型还可用于预测煤、生物质和有机废物的 SCWG,对反应器优化和放大至关重要。考虑了描述 FW 的 SCWG 动力学行为的催化效应,并基于 RPM 模型开发了半经验修正随机孔模型 (MRPM)。MRP模型的模拟结果与实验结果接近,表明MRP模型可用于预测不同条件下SCWG的整个过程,而无需将气化划分为不同的反应阶段。MRP 模型还可用于预测煤、生物质和有机废物的 SCWG,对反应器优化和放大至关重要。表明 MRP 模型可用于预测不同条件下 SCWG 的整个过程,而无需将气化划分为不同的反应阶段。MRP 模型还可用于预测煤、生物质和有机废物的 SCWG,对反应器优化和放大至关重要。表明 MRP 模型可用于预测不同条件下 SCWG 的整个过程,而无需将气化划分为不同的反应阶段。MRP 模型还可用于预测煤、生物质和有机废物的 SCWG,对反应器优化和放大至关重要。
更新日期:2019-04-01
down
wechat
bug