当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extracting dislocation microstructures by deep learning
International Journal of Plasticity ( IF 9.4 ) Pub Date : 2019-04-01 , DOI: 10.1016/j.ijplas.2018.11.008
Yuqi Zhang , Alfonso H.W. Ngan

Abstract The microstructure of dislocations can be accessed by the total density of dislocations or the density of geometrically necessary dislocations (GND). The total dislocation density determines the flow strength of a crystal, which, in the case of high dislocation contents, is a quantity very difficult to measure accurately. On the other hand, related to crystal rotations, the GND densities are conveniently measured from electron diffraction experiments or calculated via simulations. Here, a novel and modern approach is proposed to understand the microstructures of dislocations based on deep learning, which estimates the total density of dislocations from a given density of GND distributions. In this method, the convolutional neural networks (ConvNets) are applied to extract the hidden information in the GND distribution maps to understand the microstructures of dislocations. It is demonstrated that the pre-trained ConvNets can be used to predict the distribution of total dislocation density from a small GND density map. Moreover, this technique is further developed to post-process real EBSD images for α-Fe to estimate the average total dislocation density, which corresponds to stress increments from a Taylor hardening assumption that is in good agreement with experimental values. Compared with previous methods involving much effort to track individual dislocations or other quantities, the present machine learning method is quick and convenient to use.

中文翻译:

通过深度学习提取位错微结构

摘要 位错的微观结构可以通过位错的总密度或几何必要位错(GND)的密度来获得。总位错密度决定了晶体的流动强度,在位错含量高的情况下,这是一个很难准确测量的量。另一方面,与晶体旋转相关,GND 密度可以通过电子衍射实验方便地测量或通过模拟计算。在这里,提出了一种基于深度学习的新颖现代方法来理解位错的微观结构,该方法根据给定的 GND 分布密度估计位错的总密度。在这种方法中,卷积神经网络 (ConvNets) 用于提取 GND 分布图中的隐藏信息,以了解位错的微观结构。结果表明,预训练的 ConvNets 可用于从一个小的 GND 密度图预测总位错密度的分布。此外,该技术进一步发展为对 α-Fe 的真实 EBSD 图像进行后处理,以估计平均总位错密度,这对应于泰勒硬化假设的应力增量,与实验值非常一致。与以往需要大量跟踪单个位错或其他数量的方法相比,本机器学习方法使用起来既快捷又方便。结果表明,预训练的 ConvNets 可用于从一个小的 GND 密度图预测总位错密度的分布。此外,该技术进一步发展为对 α-Fe 的真实 EBSD 图像进行后处理,以估计平均总位错密度,这对应于泰勒硬化假设的应力增量,与实验值非常一致。与以往需要大量跟踪单个位错或其他数量的方法相比,本机器学习方法使用起来既快捷又方便。结果表明,预训练的 ConvNets 可用于从一个小的 GND 密度图预测总位错密度的分布。此外,该技术进一步发展为对 α-Fe 的真实 EBSD 图像进行后处理,以估计平均总位错密度,这对应于泰勒硬化假设的应力增量,与实验值非常吻合。与以往需要大量跟踪单个位错或其他数量的方法相比,本机器学习方法使用起来既快捷又方便。这对应于泰勒硬化假设的应力增量,与实验值非常一致。与以往需要大量跟踪单个位错或其他数量的方法相比,本机器学习方法使用起来既快捷又方便。这对应于泰勒硬化假设的应力增量,与实验值非常一致。与以往需要大量跟踪单个位错或其他数量的方法相比,本机器学习方法使用起来既快捷又方便。
更新日期:2019-04-01
down
wechat
bug