当前位置: X-MOL 学术Mol. Plant › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells
Molecular Plant ( IF 17.1 ) Pub Date : 2018-11-13 , DOI: 10.1016/j.molp.2018.11.002
Iain G. Johnston

Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.



中文翻译:

张力和分辨率:植物细胞内细胞器基因组的动态变化种群

线粒体和质体形成动态的,不断进化的种群,这些种群实际上嵌入了植物细胞不断变化的环境中。它们的进化传承改变了细胞如何控制细胞器种群的遗传结构和物理行为。尽管逐渐揭示了涉及这些过程的特定基因,但对于这种受控行为的指导原则仍然知之甚少。由于这些细胞器的遗传和物理动力学是生物能表现和植物生理学的核心,这对基本生物学和工程改造性能更好的植物的战略都提出了挑战。本文回顾了植物细胞中线粒体和叶绿体的物理和遗传行为的当前知识。提出了一个总体假设,即细胞器面临遗传稳健性与个体控制和响应能力之间的紧张关系,不同物种以不同方式解决这种紧张关系。由于植物是不动的,因此易受环境变化的影响,因此建议其细胞器有利于个体的响应能力,并牺牲遗传稳健性。该假设可能解释了植物细胞器的几个显着特征,包括大型基因组,mtDNA重组,片段化的细胞器以及质体/线粒体差异。最后,重点介绍了定量生物学和系统生物学可以帮助阐明该领域大量开放问题的方法。由于植物是不动的,因此易受环境变化的影响,因此建议其细胞器有利于个体的响应能力,并牺牲遗传稳健性。该假设可能解释了植物细胞器的几个显着特征,包括大型基因组,mtDNA重组,片段化的细胞器以及质体/线粒体差异。最后,重点介绍了定量生物学和系统生物学可以帮助阐明该领域大量开放问题的方法。由于植物是不动的,因此易受环境变化的影响,因此建议其细胞器有利于个体的响应能力,并牺牲遗传稳健性。该假设可能解释了植物细胞器的几个显着特征,包括大型基因组,mtDNA重组,片段化的细胞器以及质体/线粒体差异。最后,重点介绍了定量生物学和系统生物学可以帮助阐明该领域大量开放问题的方法。

更新日期:2018-11-13
down
wechat
bug