当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oscillations, travelling fronts and patterns in a supramolecular system
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2018-10-15 , DOI: 10.1038/s41565-018-0270-4
Jorge Leira-Iglesias , Alessandra Tassoni , Takuji Adachi , Michael Stich , Thomas M. Hermans

Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport1. In vivo and in vitro size oscillations of individual microtubules2,3 (dynamic instabilities) and collective oscillations4 have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems5. Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles6, micelles7 or particles8 rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH7,8,9), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst6,10). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials11 that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots12.



中文翻译:

超分子系统中的振荡,运动前沿和模式

超分子聚合物,例如微管,在非平衡条件下运行以驱动细胞的关键功能,例如运动性,分裂和细胞器运输1。已经观察到单个微管2,3的体内和体外尺寸振荡(动态不稳定性)和集体振荡4。此外,非搅拌系统中还可以形成诸如波浪和多边形之类的动态空间结构5。在这里,我们描述了一种由per二酰亚胺衍生物制成的人工超分子聚合物,当被化学燃料推离平衡时,它会显示出振荡,行进前沿和厘米尺度的自组织模式。振荡起因于成核-伸长-断裂的正反馈,而起因于尺寸依赖性解聚的负反馈。由于自组装引起的密度差异会导致系统范围内的对流,因此会形成行进前沿和形态。在我们的系统中,负责非线性动力学的物种和能够自我组装的物种是相同的。相反,其他报道的由囊泡6,胶束7或颗粒8形成的振荡组件依靠已知的化学振荡器和刺激响应系统的组合,方法是通过溶剂进行通信(例如,通过更改pH 7,8,9),或通过共价锚定一种物质(例如,别洛索夫) –Zhabotinsky催化剂6,10)。自激超分子聚合物和大规模耗散结构的设计使我们更接近于创造更多类似于生命的材料11,它们类似于活细胞对外部刺激做出反应,或者更接近于创造人工自主的化学机器人12

更新日期:2018-12-10
down
wechat
bug