当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Thermodynamic formulation of a unified multi-mechanism continuum viscoplastic damage model with application to high-Cr steels
International Journal of Plasticity ( IF 6.490 ) Pub Date : 2018-09-27 , DOI: 10.1016/j.ijplas.2018.09.011
Xiaodan Cai, Paul Steinmann, Xiaohu Yao, Jiong Wang

In this paper, a unified multi-mechanism continuum viscoplastic damage model is proposed to simulate the thermomechanical behavior of high-Cr steels at elevated temperatures. To represent the effects of material degradation under external loads, a total damage tensor is incorporated, which is composed of the low-cycle fatigue damage, the creep damage and the ductile damage. Within the small strain framework, the model is established through a thermodynamically consistent approach. First, some kinematic assumptions are proposed and the concept of effective stress is adopted. Then, based on a state potential with proper constitutive form, the constitutive equations can be derived from the second law of thermodynamics. By further considering the postulate of maximum dissipation, a Lagrangian functional is constructed through a regularization scheme. The stationary points of the Lagrangian functional yield the evolution equations of the dissipative variables. For the isotropic damage case, the damage tensor can be represented by a scalar damage variable and the constitutive evolution equations in the model can be simplified. To be prepared for practical applications, numerical integration algorithms are proposed to solve the constitutive evolution equations, and the material parameters in the model are identified based on the experimental data. To demonstrate the efficiency of the current model, it is applied to simulate the thermomechanical response of high-Cr steels under different loading conditions. The simulation results can fit the experimental data at a quantitative level and the damage mechanisms under the different loading conditions can be revealed. Besides that, the model is further modified to take into account the microcracks closure effect of the ductile damage. The current model would be helpful for the safety design and lifetime evaluation of high-Cr steel components in practical applications.

更新日期:2018-09-27

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug