当前位置: X-MOL 学术J. Power Sources › 论文详情
Activation and degradation of electrospun LiFePO4 battery cathodes
Journal of Power Sources ( IF 7.467 ) Pub Date : 2018-06-16 , DOI: 10.1016/j.jpowsour.2018.06.051
Krystyna Bachtin, Dominik Kramer, V.S.Kiran Chakravadhanula, Xiaoke Mu, Vanessa Trouillet, Maximilian Kaus, Sylvio Indris, Helmut Ehrenberg, Christina Roth

Electrodes prepared by electrospinning often exhibit an activation behavior, i. e. they are reaching their full capacity only after numerous charge and discharge cycles. The activation mechanism can be explained by the improvement of the accessibility of Li+ ions to the active particles of the cathode, which increases with the number of cycles. It is assumed that, as an effect of cycling, the dense, impermeable carbon layer which covers the active material due to the carbonization step during processing cracks and delaminates, allowing this way the Li+ ions to access the active material and to intercalate into it. This has been confirmed by scanning and transmission electron microscopy performed in correlation with the electrochemical performance of electrospun electrodes. However, with even further cycling a decrease in capacity is observed. The microscopic results suggest that this is partly caused by cracks at the carbon-LiFePO4 interfaces. Thus, the cracking responsible for the activation of the electrospun electrodes at the beginning of cycling seems also to cause a part of their degradation at the end of their life. Another slow degradation mechanism confirmed by scanning electron microscopy and by X-ray photoelectron spectroscopy is the ongoing formation of a cathode electrolyte interphase.
更新日期:2018-07-08

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug