当前位置: X-MOL 学术Annu. Rev. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure and Dynamics of Membrane Proteins from Solid-State NMR
Annual Review of Biophysics ( IF 12.4 ) Pub Date : 2018-05-24 00:00:00 , DOI: 10.1146/annurev-biophys-070816-033712
Venkata S. Mandala 1 , Jonathan K. Williams 1 , Mei Hong 1
Affiliation  

Solid-state nuclear magnetic resonance (SSNMR) spectroscopy elucidates membrane protein structures and dynamics in atomic detail to yield mechanistic insights. By interrogating membrane proteins in phospholipid bilayers that closely resemble biological membranes, SSNMR spectroscopists have revealed ion conduction mechanisms, substrate transport dynamics, and oligomeric interfaces of seven-transmembrane helix proteins. Research has also identified conformational plasticity underlying virus-cell membrane fusions by complex protein machineries, and β-sheet folding and assembly by amyloidogenic proteins bound to lipid membranes. These studies collectively show that membrane proteins exhibit extensive structural plasticity to carry out their functions. Because of the inherent dependence of NMR frequencies on molecular orientations and the sensitivity of NMR frequencies to dynamical processes on timescales from nanoseconds to seconds, SSNMR spectroscopy is ideally suited to elucidate such structural plasticity, local and global conformational dynamics, protein-lipid and protein-ligand interactions, and protonation states of polar residues. New sensitivity-enhancement techniques, resolution enhancement by ultrahigh magnetic fields, and the advent of 3D and 4D correlation NMR techniques are increasingly aiding these mechanistically important structural studies.

中文翻译:


固态NMR膜蛋白的结构和动力学

固态核磁共振(SSNMR)光谱在原子细节上阐明了膜蛋白的结构和动力学,从而产生了机械方面的见解。通过询问与生物膜极为相似的磷脂双层膜中的膜蛋白,SSNMR光谱学家发现了七跨膜螺旋蛋白的离子传导机制,底物转运动力学和寡聚界面。研究还通过复杂的蛋白质机制鉴定了病毒-细胞膜融合的构象可塑性,并通过与脂质膜结合的淀粉样蛋白形成了β-折叠和组装。这些研究共同表明,膜蛋白具有广泛的结构可塑性,可以发挥其功能。由于NMR频率固有地依赖于分子取向,并且NMR频率对动力学过程的敏感度在从纳秒到几秒的时间范围内,因此SSNMR光谱学非常适合于阐明此类结构可塑性,局部和整体构象动力学,蛋白质脂质和蛋白质-配体相互作用和极性残基的质子化状态。新的灵敏度增强技术,超高磁场增强的分辨率以及3D和4D相关NMR技术的出现越来越多地帮助了这些具有机械重要性的结构研究。蛋白质-脂质和蛋白质-配体的相互作用以及极性残基的质子化状态。新的灵敏度增强技术,超高磁场增强的分辨率以及3D和4D相关NMR技术的出现越来越多地帮助了这些具有机械重要性的结构研究。蛋白质-脂质和蛋白质-配体的相互作用以及极性残基的质子化状态。新的灵敏度增强技术,超高磁场增强的分辨率以及3D和4D相关NMR技术的出现越来越多地帮助了这些具有机械重要性的结构研究。

更新日期:2018-05-24
down
wechat
bug