当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Stretchable Conductive Fibers Based on a Cracking Control Strategy for Wearable Electronics
Advanced Functional Materials ( IF 15.621 ) Pub Date : 22 May 201 , DOI: 10.1002/adfm.201801683
Bo Zhang; Jie Lei; Dianpeng Qi; Zhiyuan Liu; Yu Wang; Gengwu Xiao; Jiansheng Wu; Weina Zhang; Fengwei Huo; Xiaodong Chen

Stretchability plays an important role in wearable devices. Repeated stretching often causes the conductivity dramatically decreasing due to the damage of the inner conductive layer, which is a fatal and undesirable issue in this field. Herein, a convenient rolling strategy to prepare conductive fibers with high stretchability based on a spiral structure is proposed. With the simple rolling design, low resistance change can be obtained due to confined elongation nof the gold thin‐film cracks, which is caused by the encapsulated effect in such a structure. When the fiber is under 50% strain, the resistance change (R/R0) is about 1.5, which is much lower than a thin film at the same strain (R/R0 ≈ 10). The fiber can even afford a high load strain (up to 100%), but still retain good conductivity. Such a design further demonstrates its capability when it is used as a conductor to confirm signal transfer with low attenuation, which can also be woven into textile to fabricate wearable electronics.
更新日期:2018-07-16

 

分享到
评论: 0
期刊列表
BMC Public Health
Altmetric百强作者经验
北大深研院会议广告
课题组网站
Springer Nature
Nature中文内容
北京理工大学机电学院孙伟福
厦门大学药学院宗利利
武汉大学高等研究院陈素明
上海交大医学院分子医学研究院韩达
试剂库存
X-MOL文献直达记录功能上线
天合科研
2017年中科院JCR分区化学大类列表
化合物查询
down
wechat
bug