当前位置: X-MOL 学术Microbiol. Mol. Biol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures
Microbiology and Molecular Biology Reviews ( IF 8.0 ) Pub Date : 2018-04-11 , DOI: 10.1128/mmbr.00068-17
Meritxell Riquelme 1 , Jesús Aguirre 2 , Salomon Bartnicki-García 3 , Gerhard H Braus 4 , Michael Feldbrügge 5 , Ursula Fleig 6 , Wilhelm Hansberg 2 , Alfredo Herrera-Estrella 7 , Jörg Kämper 8 , Ulrich Kück 9 , Rosa R Mouriño-Pérez 3 , Norio Takeshita 10 , Reinhard Fischer 11
Affiliation  

SUMMARY Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.



中文翻译:


真菌形态发生,从菌丝的极化生长到复杂的繁殖和感染结构



摘要丝状真菌构成了一大类真核微生物,它们通过形成简单的管状菌丝来生长,这些菌丝能够分化成更复杂的形态结构和不同的细胞类型。菌丝通过在其尖端延伸同时在近顶端区域分支而形成丝状网络。尖端的快速伸长需要大量的膜插入和刚性的含几丁质的细胞壁的延伸。这一过程由分泌囊泡的连续流动来维持,分泌囊泡的持续流动取决于微管和肌动蛋白细胞骨架以及相应的马达和相关蛋白的协调作用。囊泡运输细胞壁合成酶并积聚在一种特殊的结构(Spitzenkörper)中,然后进一步移动并与尖端膜融合。囊泡融合的位置和生长方向是由 Spitzenkörper、所谓的细胞末端标记以及参与胞吐过程的其他蛋白质的位置启用和定义的。对于尖端延伸也很重要的是通过早期内体的内吞作用进行膜回收,其作为 mRNA、脓毒症、核糖体和过氧化物酶体的多用途运输工具。细胞完整性、菌丝分支和形态发生都是很大程度上依赖于囊泡和细胞骨架动力学的过程。当菌丝区分无性或有性繁殖的结构或介导种间相互作用时,菌丝基本细胞机制可以通过新蛋白质的合成和/或蛋白质活性的修饰来重新编程。 尽管在几种模型丝状真菌中对涉及菌丝重编程的一些转录网络进行了深入研究,但这些网络与菌丝形态发生的已知决定因素之间的明确联系尚未建立。

更新日期:2018-04-11
down
wechat
bug