当前位置: X-MOL 学术IEEE Trans. Ind. Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supervisory Control Approach and its Symbolic Computation for Power-Aware RT Scheduling
IEEE Transactions on Industrial Informatics ( IF 11.7 ) Pub Date : 4-9-2018 , DOI: 10.1109/tii.2018.2824564
Rajesh Devaraj , Arnab Sarkar , Santosh Biswas

Safety-critical systems implemented on multicore platforms need to satisfy stringent power dissipation constraints such as thermal design power (TDP) thresholds used by chip manufacturers. Power dissipation beyond TDP may trigger dynamic thermal management (DTM) in order to ensure thermal stability of the system. However, the application of DTM makes the system susceptible to higher unpredictability and performance degradations for real-time tasks. This paper proposes a formal scheduler synthesis framework that guarantees adherence to a system level peak power constraint while allowing optimal resource utilization in multicores. Our proposed framework makes use of supervisory control of timed discrete event systems as the underlying formalism. All steps starting from individual models to construction of the scheduler have been implemented through binary decision diagram based symbolic computation, so that the state-space complexity associated with the framework may be controlled. Furthermore, the synthesis framework has been extended to handle tasks with phased execution behavior. Conducted experiments have shown promising results and indicate to the practical efficacy of our approach.

中文翻译:


用于功率感知RT调度的监控方法及其符号计算



在多核平台上实现的安全关键系统需要满足严格的功耗限制,例如芯片制造商使用的热设计功耗 (TDP) 阈值。超出 TDP 的功耗可能会触发动态热管理 (DTM),以确保系统的热稳定性。然而,DTM的应用使得系统容易受到实时任务更高的不可预测性和性能下降的影响。本文提出了一种正式的调度程序综合框架,该框架保证遵守系统级峰值功率约束,同时允许多核中的最佳资源利用。我们提出的框架利用定时离散事件系统的监督控制作为底层形式。从各个模型开始到调度器的构造的所有步骤都通过基于二元决策图的符号计算来实现,从而可以控制与框架相关的状态空间复杂度。此外,综合框架已扩展为处理具有分阶段执行行为的任务。进行的实验显示出有希望的结果,并表明我们的方法的实际功效。
更新日期:2024-08-22
down
wechat
bug