当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic layer deposition of Al2O3 on P2-Na0.5Mn0.5Co0.5O2 as interfacial layer for high power sodium-ion batteries.
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2020-01-02 , DOI: 10.1016/j.jcis.2019.12.132
Hari Vignesh Ramasamy 1 , Pravin N Didwal 2 , Soumyadeep Sinha 2 , Vanchiappan Aravindan 3 , Jaeyeong Heo 2 , Chan-Jin Park 2 , Yun-Sung Lee 1
Affiliation  

Surface modification is one of the impressive and widely used technique to improve the electrochemical performance of sodium-ion batteries by modifying the electrode-electrolyte interface. Herein, we used the atomic layer deposition (ALD) to modify the surface of P2-Na0.5Mn0.5Co0.5O2 by sub-monolayer Al2O3 coating on the prefabricated electrodes. Phase purity is confirmed using various structural and morphological studies. The pristine electrode delivered an initial discharge capacity of 154 mAh g-1 at 0.5C, and inferior rate performance of 23 mAh g-1 at 40C rate. On the other hand, the interfacial modified cathode with 5 cycles of ALD coating delivers a high capacity of 174 and 45 mAh g-1 at 0.5C and 40C rate, respectively. The Co2+/3+ redox couple is utilized for the faradaic process with high reversibility along with suppressed P2-O2 phase transition. The presence of the Al2O3 layer acts as an artificial cathode electrolyte interface by suppressing the electrolyte oxidation at higher cutoff potentials. This is clearly validated by the reduced charge transfer resistance of surface modified electrodes after cycling at various current rates. Even at an elevated temperature condition (50 °C), interfacial layer significantly improves the safety of the cell and ensures the stability of the cathode.

中文翻译:

Al2O3在P2-Na0.5Mn0.5Co0.5O2上的原子层沉积,作为高功率钠离子电池的界面层。

表面改性是令人印象深刻且广泛使用的技术之一,可通过修改电极与电解质的界面来改善钠离子电池的电化学性能。本文中,我们使用原子层沉积(ALD)通过在预制电极上的亚单层Al2O3涂层修饰P2-Na0.5Mn0.5Co0.5O2的表面。使用各种结构和形态研究证实了相纯度。原始电极在0.5C时的初始放电容量为154 mAh g-1,在40C时的放电率性能为23 mAh g-1。另一方面,具有5个ALD涂层循环的界面改性阴极在0.5C和40C速率下分别提供174和45 mAh g-1的高容量。Co2 + / 3 +氧化还原对可用于法拉第工艺,具有高可逆性以及抑制的P2-O2相变。Al2O3层的存在通过抑制电解质在更高的截止电位下的氧化作用,充当了人工阴极电解质的界面。在各种电流速率下循环后,表面改性电极的电荷转移电阻降低,显然可以证明这一点。即使在高温条件下(50°C),界面层也可以显着提高电池的安全性并确保阴极的稳定性。在各种电流速率下循环后,表面改性电极的电荷转移电阻降低,显然可以证明这一点。即使在高温条件下(50°C),界面层也可以显着提高电池的安全性并确保阴极的稳定性。在各种电流速率下循环后,表面改性电极的电荷转移电阻降低,显然可以证明这一点。即使在高温条件下(50°C),界面层也可以显着提高电池的安全性并确保阴极的稳定性。
更新日期:2020-01-02
down
wechat
bug