当前位置: X-MOL 学术J. Math. Chem. › 论文详情
Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces
Journal of Mathematical Chemistry ( IF 1.810 ) Pub Date : 2020-01-02 , DOI: 10.1007/s10910-019-01097-y
P. Maroju, Á. A. Magreñán, Í. Sarría, Abhimanyu Kumar

This paper deal with the study of local convergence of fourth and fifth order iterative method for solving nonlinear equations in Banach spaces. Only the premise that the first order Fréchet derivative fulfills the Lipschitz continuity condition is needed. Under these conditions, a convergence theorem is established to study the existence and uniqueness regions for the solution for each method. The efficacy of our convergence study is shown solving various numerical examples as a nonlinear integral equation and calculating the radius of the convergence balls. We compare the radii of convergence balls and observe that by our approach, we get much larger balls as existing ones. In addition, we also include the real and complex dynamic study of one of the methods applied to a generic polynomial of order two.
更新日期:2020-01-02

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug